@fungible-systems/noble-secp256k1
v1.2.9
Published
Fastest JS implementation of secp256k1. Independently audited, high-security, 0-dependency ECDSA & Schnorr signatures
Downloads
16
Maintainers
Readme
noble-secp256k1
Fastest JS implementation of secp256k1, an elliptic curve that could be used for asymmetric encryption, ECDH key agreement protocol and signature schemes. Supports deterministic ECDSA from RFC6979 and Schnorr signatures from BIP0340.
Audited with crowdfunding by an independent security firm. Tested against thousands of test vectors from a different library. Check out the online demo and blog post: Learning fast elliptic-curve cryptography in JS
This library belongs to noble crypto
noble-crypto — high-security, easily auditable set of contained cryptographic libraries and tools.
- No dependencies, one small file
- Easily auditable TypeScript/JS code
- Supported in all major browsers and stable node.js versions
- All releases are signed with PGP keys
- Check out all libraries: secp256k1, ed25519, bls12-381, ripemd160
Usage
Use NPM in node.js / browser, or include single file from GitHub's releases page:
npm install noble-secp256k1
import * as secp from "noble-secp256k1";
// if you're using single file, use global variable nobleSecp256k1 instead
(async () => {
// You pass either a hex string, or Uint8Array
const privateKey = "6b911fd37cdf5c81d4c0adb1ab7fa822ed253ab0ad9aa18d77257c88b29b718e";
const messageHash = "a33321f98e4ff1c283c76998f14f57447545d339b3db534c6d886decb4209f28";
const publicKey = secp.getPublicKey(privateKey);
const signature = await secp.sign(messageHash, privateKey);
const isSigned = secp.verify(signature, messageHash, publicKey);
// Supports Schnorr signatures
const rpub = secp.schnorr.getPublicKey(privateKey);
const rsignature = await secp.schnorr.sign(messageHash, privateKey);
const risSigned = await secp.schnorr.verify(rsignature, messageHash, rpub);
})();
Deno:
import * as secp from "https://deno.land/x/secp256k1/mod.ts";
const publicKey = secp.getPublicKey("6b911fd37cdf5c81d4c0adb1ab7fa822ed253ab0ad9aa18d77257c88b29b718e");
API
getPublicKey(privateKey)
getSharedSecret(privateKeyA, publicKeyB)
sign(hash, privateKey)
verify(signature, hash, publicKey)
recoverPublicKey(hash, signature, recovery)
schnorr.getPublicKey(privateKey)
schnorr.sign(hash, privateKey)
schnorr.verify(signature, hash, publicKey)
- Helpers
getPublicKey(privateKey)
function getPublicKey(privateKey: Uint8Array, isCompressed?: false): Uint8Array;
function getPublicKey(privateKey: string, isCompressed?: false): string;
function getPublicKey(privateKey: bigint): Uint8Array;
privateKey
will be used to generate public key.
Public key is generated by doing scalar multiplication of a base Point(x, y) by a fixed
integer. The result is another Point(x, y)
which we will by default encode to hex Uint8Array.
isCompressed
(default is false
) determines whether the output should contain y
coordinate of the point.
To get Point instance, use Point.fromPrivateKey(privateKey)
.
getSharedSecret(privateKeyA, publicKeyB)
function getSharedSecret(privateKeyA: Uint8Array, publicKeyB: Uint8Array): Uint8Array;
function getSharedSecret(privateKeyA: string, publicKeyB: string): string;
function getSharedSecret(privateKeyA: bigint, publicKeyB: Point): Uint8Array;
Computes ECDH (Elliptic Curve Diffie-Hellman) shared secret between a private key and a different public key.
To get Point instance, use Point.fromHex(publicKeyB).multiply(privateKeyA)
.
To speed-up the function massively by precomputing EC multiplications,
use getSharedSecret(privateKeyA, secp.utils.precompute(8, publicKeyB))
sign(hash, privateKey)
function sign(msgHash: Uint8Array, privateKey: Uint8Array, opts?: Options): Promise<Uint8Array>;
function sign(msgHash: string, privateKey: string, opts?: Options): Promise<string>;
function sign(msgHash: Uint8Array, privateKey: Uint8Array, opts?: Options): Promise<[Uint8Array | string, number]>;
Generates deterministic ECDSA signature as per RFC6979. Asynchronous, if you need sync version, use _syncSign()
.
msgHash: Uint8Array | string
- message hash which would be signedprivateKey: Uint8Array | string | bigint
- private key which will sign the hashoptions?: Options
- optional object related to signature value and formatoptions?.recovered: boolean = false
- determines whether the recovered bit should be included in the result. In this case, the result would be an array of two items.options?.canonical: boolean = false
- determines whether a signatures
should be no more than 1/2 prime order- Returns DER encoded ECDSA signature, as hex uint8a / string and recovered bit if
options.recovered == true
.
verify(signature, hash, publicKey)
function verify(signature: Uint8Array, msgHash: Uint8Array, publicKey: Uint8Array): boolean
function verify(signature: string, msgHash: string, publicKey: string): boolean
signature: Uint8Array | string | { r: bigint, s: bigint }
- object returned by thesign
functionmsgHash: Uint8Array | string
- message hash that needs to be verifiedpublicKey: Uint8Array | string | Point
- e.g. that was generated fromprivateKey
bygetPublicKey
- Returns
boolean
:true
ifsignature == hash
; otherwisefalse
recoverPublicKey(hash, signature, recovery)
export declare function recoverPublicKey(msgHash: string, signature: string, recovery: number): string | undefined;
export declare function recoverPublicKey(msgHash: Uint8Array, signature: Uint8Array, recovery: number): Uint8Array | undefined;
msgHash: Uint8Array | string
- message hash which would be signedsignature: Uint8Array | string | { r: bigint, s: bigint }
- object returned by thesign
functionrecovery: number
- recovery bit returned bysign
withrecovered
option Public key is generated by doing scalar multiplication of a base Point(x, y) by a fixed integer. The result is anotherPoint(x, y)
which we will by default encode to hex Uint8Array. If signature is invalid - function will returnundefined
as result.
To get Point instance, use Point.fromSignature(hash, signature, recovery)
.
schnorr.getPublicKey(privateKey)
function schnorrGetPublicKey(privateKey: Uint8Array): Uint8Array;
function schnorrGetPublicKey(privateKey: string): string;
Returns 32-byte public key. Warning: it is incompatible with non-schnorr pubkey.
Specifically, its y coordinate may be flipped. See BIP0340 for clarification.
schnorr.sign(hash, privateKey)
function schnorrSign(msgHash: Uint8Array, privateKey: Uint8Array, auxilaryRandom?: Uint8Array): Promise<Uint8Array>;
function schnorrSign(msgHash: string, privateKey: string, auxilaryRandom?: string): Promise<string>;
Generates Schnorr signature as per BIP0340. Asynchronous, so use await
.
msgHash: Uint8Array | string
- message hash which would be signedprivateKey: Uint8Array | string | bigint
- private key which will sign the hashauxilaryRandom?: Uint8Array
— optional 32 random bytes. By default, the method gathers cryptogarphically secure random.- Returns Schnorr signature in Hex format.
schnorr.verify(signature, hash, publicKey)
function schnorrVerify(signature: Uint8Array | string, msgHash: Uint8Array | string, publicKey: Uint8Array | string): boolean
signature: Uint8Array | string | { r: bigint, s: bigint }
- object returned by thesign
functionmsgHash: Uint8Array | string
- message hash that needs to be verifiedpublicKey: Uint8Array | string | Point
- e.g. that was generated fromprivateKey
bygetPublicKey
- Returns
boolean
:true
ifsignature == hash
; otherwisefalse
Point methods
Helpers
utils.randomPrivateKey(): Uint8Array
Returns Uint8Array
of 32 cryptographically secure random bytes that can be used as private key.
utils.precompute(W = 8, point = BASE_POINT): Point
Returns cached point which you can use to pass to getSharedSecret
or to #multiply
by it.
This is done by default, no need to run it unless you want to disable precomputation or change window size.
We're doing scalar multiplication (used in getPublicKey etc) with precomputed BASE_POINT values.
This slows down first getPublicKey() by milliseconds (see Speed section), but allows to speed-up subsequent getPublicKey() calls up to 20x.
You may want to precompute values for your own point.
secp256k1.CURVE.P // Field, 2 ** 256 - 2 ** 32 - 977
secp256k1.CURVE.n // Order, 2 ** 256 - 432420386565659656852420866394968145599
secp256k1.Point.BASE // new secp256k1.Point(Gx, Gy) where
// Gx = 55066263022277343669578718895168534326250603453777594175500187360389116729240n
// Gy = 32670510020758816978083085130507043184471273380659243275938904335757337482424n;
// Elliptic curve point in Affine (x, y) coordinates.
secp256k1.Point {
constructor(x: bigint, y: bigint);
// Supports compressed and non-compressed hex
static fromHex(hex: Uint8Array | string);
static fromPrivateKey(privateKey: Uint8Array | string | number | bigint);
static fromSignature(
msgHash: Hex,
signature: Signature,
recovery: number | bigint
): Point | undefined {
toRawBytes(isCompressed = false): Uint8Array;
toHex(isCompressed = false): string;
equals(other: Point): boolean;
negate(): Point;
add(other: Point): Point;
subtract(other: Point): Point;
// Constant-time scalar multiplication.
multiply(scalar: bigint | Uint8Array): Point;
}
secp256k1.Signature {
constructor(r: bigint, s: bigint);
// DER encoded ECDSA signature
static fromHex(hex: Uint8Array | string);
toHex(): string;
}
Security
Noble is production-ready.
- The library has been audited by an independent security firm cure53: PDF. The audit has been crowdfunded by community with help of Umbra.cash.
- The library has also been fuzzed by Guido Vranken's cryptofuzz. You can run the fuzzer by yourself to check it.
We're using built-in JS BigInt
, which is "unsuitable for use in cryptography" as per official spec. This means that the lib is potentially vulnerable to timing attacks. But, JIT-compiler and Garbage Collector make "constant time" extremely hard to achieve in a scripting language. Which means any other JS library doesn't use constant-time bigints. Including bn.js or anything else. Even statically typed Rust, a language without GC, makes it harder to achieve constant-time for some cases. If your goal is absolute security, don't use any JS lib — including bindings to native ones. Use low-level libraries & languages. Nonetheless we've hardened implementation of koblitz curve multiplication to be algorithmically constant time.
We however consider infrastructure attacks like rogue NPM modules very important; that's why it's crucial to minimize the amount of 3rd-party dependencies & native bindings. If your app uses 500 dependencies, any dep could get hacked and you'll be downloading rootkits with every npm install
. Our goal is to minimize this attack vector.
Speed
Benchmarks measured with Apple M1.
getPublicKey(utils.randomPrivateKey()) x 6,121 ops/sec @ 163μs/op
sign x 4,468 ops/sec @ 223μs/op
verify x 923 ops/sec @ 1ms/op
recoverPublicKey x 491 ops/sec @ 2ms/op
getSharedSecret aka ecdh x 534 ops/sec @ 1ms/op
getSharedSecret (precomputed) x 7,105 ops/sec @ 140μs/op
Point.fromHex (decompression) x 12,171 ops/sec @ 82μs/op
schnorr.sign x 409 ops/sec @ 2ms/op
schnorr.verify x 504 ops/sec @ 1ms/op
Compare to other libraries (openssl
uses native bindings, not JS):
elliptic#getPublicKey x 1,940 ops/sec
sjcl#getPublicKey x 211 ops/sec
elliptic#sign x 1,808 ops/sec
sjcl#sign x 199 ops/sec
openssl#sign x 4,243 ops/sec
ecdsa#sign x 116 ops/sec
bip-schnorr#sign x 60 ops/sec
elliptic#verify x 812 ops/sec
sjcl#verify x 166 ops/sec
openssl#verify x 4,452 ops/sec
ecdsa#verify x 80 ops/sec
bip-schnorr#verify x 56 ops/sec
elliptic#ecdh x 971 ops/sec
Contributing
Check out a blog post about this library: Learning fast elliptic-curve cryptography in JS.
- Clone the repository.
npm install
to install build dependencies like TypeScriptnpm run compile
to compile TypeScript codenpm run test
to run jest ontest/index.ts
Special thanks to Roman Koblov, who have helped to improve scalar multiplication speed.
License
MIT (c) Paul Miller (https://paulmillr.com), see LICENSE file.