npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@fugle/backtest

v0.1.0

Published

Backtest trading strategies in Node.js

Downloads

229

Readme

Fugle Backtest

NPM version Build Status Coverage Status

A trading strategy backtesting library in Node.js based on Danfo.js and inspired by backtesting.py.

Installation

$ npm install --save @fugle/backtest

Importing

// Using Node.js `require()`
const { Backtest, Strategy } = require('@fugle/backtest');

// Using ES6 imports
import { Backtest, Strategy } from '@fugle/backtest';

Quick Start

The following example use technicalindicators to calculate the indicators and signals, but you can replace it with any library.

import { Backtest, Strategy } from '@fugle/backtest';
import { SMA, CrossUp, CrossDown } from 'technicalindicators';

class SmaCross extends Strategy {
  params = { n1: 20, n2: 60 };

  init() {
    const lineA = SMA.calculate({
      period: this.params.n1,
      values: this.data['close'].values,
    });
    this.addIndicator('lineA', lineA);

    const lineB = SMA.calculate({
      period: this.params.n2,
      values: this.data['close'].values,
    });
    this.addIndicator('lineB', lineB);

    const crossUp = CrossUp.calculate({
      lineA: this.getIndicator('lineA'),
      lineB: this.getIndicator('lineB'),
    });
    this.addSignal('crossUp', crossUp);

    const crossDown = CrossDown.calculate({
      lineA: this.getIndicator('lineA'),
      lineB: this.getIndicator('lineB'),
    });
    this.addSignal('crossDown', crossDown);
  }

  next(ctx) {
    const { index, signals } = ctx;
    if (index < this.params.n1 || index < this.params.n2) return;
    if (signals.get('crossUp')) this.buy({ size: 1000 });
    if (signals.get('crossDown')) this.sell({ size: 1000 });
  }
}

const data = require('./data.json');  // historical OHLCV data

const backtest = new Backtest(data, SmaCross, {
  cash: 1000000,
  tradeOnClose: true,
});

backtest.run()        // run the backtest
  .then(results => {
    results.print();  // print the results
    results.plot();   // plot the equity curve
  });

Results in:

╔════════════════════════╤═══════════════════════╗
║ Strategy               │ SmaCross(n1=20,n2=60) ║
╟────────────────────────┼───────────────────────╢
║ Start                  │ 2020-01-02            ║
╟────────────────────────┼───────────────────────╢
║ End                    │ 2022-12-30            ║
╟────────────────────────┼───────────────────────╢
║ Duration               │ 1093                  ║
╟────────────────────────┼───────────────────────╢
║ Exposure Time [%]      │ 55.102041             ║
╟────────────────────────┼───────────────────────╢
║ Equity Final [$]       │ 1105000               ║
╟────────────────────────┼───────────────────────╢
║ Equity Peak [$]        │ 1378000               ║
╟────────────────────────┼───────────────────────╢
║ Return [%]             │ 10.5                  ║
╟────────────────────────┼───────────────────────╢
║ Buy & Hold Return [%]  │ 32.300885             ║
╟────────────────────────┼───────────────────────╢
║ Return (Ann.) [%]      │ 3.482537              ║
╟────────────────────────┼───────────────────────╢
║ Volatility (Ann.) [%]  │ 8.204114              ║
╟────────────────────────┼───────────────────────╢
║ Sharpe Ratio           │ 0.424487              ║
╟────────────────────────┼───────────────────────╢
║ Sortino Ratio          │ 0.660431              ║
╟────────────────────────┼───────────────────────╢
║ Calmar Ratio           │ 0.175785              ║
╟────────────────────────┼───────────────────────╢
║ Max. Drawdown [%]      │ -19.811321            ║
╟────────────────────────┼───────────────────────╢
║ Avg. Drawdown [%]      │ -2.241326             ║
╟────────────────────────┼───────────────────────╢
║ Max. Drawdown Duration │ 708                   ║
╟────────────────────────┼───────────────────────╢
║ Avg. Drawdown Duration │ 54                    ║
╟────────────────────────┼───────────────────────╢
║ # Trades               │ 6                     ║
╟────────────────────────┼───────────────────────╢
║ Win Rate [%]           │ 16.666667             ║
╟────────────────────────┼───────────────────────╢
║ Best Trade [%]         │ 102.3729              ║
╟────────────────────────┼───────────────────────╢
║ Worst Trade [%]        │ -10.4418              ║
╟────────────────────────┼───────────────────────╢
║ Avg. Trade [%]         │ 5.718878              ║
╟────────────────────────┼───────────────────────╢
║ Max. Trade Duration    │ 322                   ║
╟────────────────────────┼───────────────────────╢
║ Avg. Trade Duration    │ 100                   ║
╟────────────────────────┼───────────────────────╢
║ Profit Factor          │ 2.880822              ║
╟────────────────────────┼───────────────────────╢
║ Expectancy [%]         │ 11.139483             ║
╟────────────────────────┼───────────────────────╢
║ SQN                    │ 0.305807              ║
╚════════════════════════╧═══════════════════════╝

Usage

To perform backtesting, you need to prepare historical data, implement a trading strategy, and then run a backtest on that strategy to obtain the results.

Preparing historical data

First, prepare the historical OHLCV (Open, High, Low, Close, Volume) data of any financial instrument (such as stocks, futures, forex, cryptocurrencies, etc.). The input historical data will be converted to Danfo.js DataFrame, and the data format can be either Array<Candle> or CandleList type as follows:

interface Candle {
  date: string;
  open: number;
  high: number;
  low: number;
  close: number;
  volume?: number;
}

interface CandleList {
  date: string[];
  open: number[];
  high: number[];
  low: number[];
  close: number[];
  volume?: number[];
}

type HistoricalData = Array<Candle> | CandleList;

Implementing trading strategy

You can implement your own trading strategy by inheriting the Strategy class and overriding its two abstract methods:

  • Strategy.init(data): This method is called before running the strategy. You can pre-calculate all indicators and signals that the strategy depends on.
  • Strategy.next(context): This method will be iteratively called when running the strategy with the Backtest instance, and the context parameter represents the current candle and technical indicators and signals. You can decide whether to make buy or sell actions based on the current price, indicators, and signals.

Here's an example of implementing a simple average crossover strategy. The parameter n1 represents the period of the short-term moving average, and n2 represents the period of the long-term moving average. When the short-term moving average crosses above the long-term moving average, it buys 1000 trading unit. Conversely, when the short-term moving average crosses below the long-term moving average, the strategy sells 1000 trading unit.

import { Backtest, Strategy } from '@fugle/backtest';
import { SMA, CrossUp, CrossDown } from 'technicalindicators';

class SmaCross extends Strategy {
  params = { n1: 20, n2: 60 };

  init() {
    const lineA = SMA.calculate({
      period: this.params.n1,
      values: this.data['close'].values,
    });
    this.addIndicator('lineA', lineA);

    const lineB = SMA.calculate({
      period: this.params.n2,
      values: this.data['close'].values,
    });
    this.addIndicator('lineB', lineB);

    const crossUp = CrossUp.calculate({
      lineA: this.getIndicator('lineA'),
      lineB: this.getIndicator('lineB'),
    });
    this.addSignal('crossUp', crossUp);

    const crossDown = CrossDown.calculate({
      lineA: this.getIndicator('lineA'),
      lineB: this.getIndicator('lineB'),
    });
    this.addSignal('crossDown', crossDown);
  }

  next(ctx) {
    const { index, signals } = ctx;
    if (index < this.params.n1 || index < this.params.n2) return;
    if (signals.get('crossUp')) this.buy({ size: 1000 });
    if (signals.get('crossDown')) this.sell({ size: 1000 });
  }
}

Running the backtest

After preparing historical data and implementing the trading strategy, you can run the backtest. Calling the Backtest.run() method will execute the backtest and return a Stats instance, which includes the simulation results of our strategy and related statistical data.

const backtest = new Backtest(data, SmaCross, {
  cash: 1000000,
  tradeOnClose: true,
});

backtest.run()        // run the backtest
  .then(results => {
    results.print();  // print the results
    results.plot();   // plot the equity curve
  });

Optimizing the parameters

In the above strategy, we provide two variable parameters params.n1 and params.n2, which represent the period of two moving averages. We can optimize the parameters and find the best combination of multiple parameters by calling the Backtest.optimize() method. Setting the params option in this method can change the parameter settings provided by the Strategy, and Backtest.optimize() will return the best combination of parameters provided.

backtest.optimize({
  params: {
    n1: [5, 10, 20],
    n2: [60, 120, 240],
  },
})
  .then(results => {
    results.print();  // print out the results of the optimized parameters
    results.plot();   // plot the equity curve of the optimized parameters
  });

Documentation

See /doc/fugle-backtest.md for Node.js-like documentation of @fugle/backtest classes.

License

MIT