@frost-beta/clip
v1.3.1
Published
Compute embeddings of text/images with CLIP model
Downloads
32
Readme
Clip
Node.js module for the CLIP model.
Powered by node-mlx, a machine learning framework for Node.js.
APIs
import { core as mx } from '@frost-beta/mlx';
export type ImageInputType = Buffer | ArrayBuffer | string;
export interface ProcessedImage {
data: Buffer;
info: sharp.OutputInfo;
}
export interface ClipInput {
labels?: string[];
images?: ProcessedImage[];
}
export interface ClipOutput {
labelEmbeddings?: mx.array;
imageEmbeddings?: mx.array;
}
export class Clip {
constructor(modelDir: string);
processImages(images: ImageInputType[]): Promise<ProcessedImage[]>;
computeEmbeddings({ labels, images }: ClipInput): ClipOutput;
/**
* Short hands of computeEmbeddings to convert results to JavaScript numbers
* and ensure the intermediate arrays are destroyed.
*/
computeLabelEmbeddingsJs(labels: string[]): number[][];
computeImageEmbeddingsJs(images: ProcessedImage[]): number[][];
/**
* Compute the cosine similarity between 2 embeddings.
*/
static computeCosineSimilaritiy(a1: mx.array, a2: mx.array): mx.array;
/**
* Compute the cosine similarities between 2 arrays of embeddings.
*
* A tuple will be returned, with the first element being the cosine
* similarity scores, and the second element being the indices sorted by
* their scores from larger to smalller.
*/
static computeCosineSimilarities(x1: mx.array | number[][], x2: mx.array | number[][]): [mx.array, mx.array];
}
License
MIT