@feng3d/wgsl_reflect
v0.0.2
Published
WGSL Parser and Reflection library
Downloads
2
Readme
WebGPU Shading Language Reflection Library
A WebGPU Shading Language parser and reflection library for Typescript and Javascript.
wgsl_reflect can parse a WGSL shader and analyze its contents, providing information about the shader. It can determine the bind group layout of the shader, resource bindings, uniform buffers, the members of a uniform buffer, their names, types, sizes, offsets into the buffer.
Usage
The wgsl_reflect.module.js file is a self-contained roll-up of the library that can be included in your project and imported with:
import { WgslReflect } from "wgsl_reflect";
const reflect = new WgslReflect(shader_code);
Try It Out
Examples
Calculate the bind group information in the shader:
import { WgslReflect } from "wgsl_reflect";
const shader = `
struct ViewUniforms {
viewProjection: mat4x4<f32>
}
struct ModelUniforms {
model: mat4x4<f32>,
color: vec4<f32>,
intensity: f32
}
@binding(0) @group(0) var<uniform> viewUniforms: ViewUniforms;
@binding(1) @group(0) var<uniform> modelUniforms: ModelUniforms;
@binding(2) @group(0) var u_sampler: sampler;
@binding(3) @group(0) var u_texture: texture_2d<f32>;
struct VertexInput {
@location(0) a_position: vec3<f32>,
@location(1) a_normal: vec3<f32>,
@location(2) a_color: vec4<f32>,
@location(3) a_uv: vec2<f32>
}
struct VertexOutput {
@builtin(position) Position: vec4<f32>,
@location(0) v_position: vec4<f32>,
@location(1) v_normal: vec3<f32>,
@location(2) v_color: vec4<f32>,
@location(3) v_uv: vec2<f32>
}
@vertex
fn main(input: VertexInput) -> VertexOutput {
var output: VertexOutput;
output.Position = viewUniforms.viewProjection * modelUniforms.model * vec4<f32>(input.a_position, 1.0);
output.v_position = output.Position;
output.v_normal = input.a_normal;
output.v_color = input.a_color * modelUniforms.color * modelUniforms.intensity;
output.v_uv = input.a_uv;
return output;
}`;
const reflect = new WgslReflect(shader);
console.log(reflect.functions.length); // 1
console.log(reflect.structs.length); // 4
console.log(reflect.uniforms.length); // 2
// Shader entry points
console.log(reflect.entry.vertex.length); // 1, there is 1 vertex entry function.
console.log(reflect.entry.fragment.length); // 0, there are no fragment entry functions.
console.log(reflect.entry.compute.length); // 0, there are no compute entry functions.
console.log(reflect.entry.vertex[0].name); // "main", the name of the vertex entry function.
// Vertex shader inputs
console.log(reflect.entry.vertex[0].inputs.length); // 4, inputs to "main"
console.log(reflect.entry.vertex[0].inputs[0].name); // "a_position"
console.log(reflect.entry.vertex[0].inputs[0].location); // 0
console.log(reflect.entry.vertex[0].inputs[0].locationType); // "location" (can be "builtin")
console.log(reflect.entry.vertex[0].inputs[0].type.name); // "vec3"
console.log(reflect.entry.vertex[0].inputs[0].type.format.name); // "f32"
// Bind groups
const groups = reflect.getBindGroups();
console.log(groups.length); // 1
console.log(groups[0].length); // 4, bindings in group(0)
console.log(groups[0][1].type); // "buffer", the type of resource at group(0) binding(1)
console.log(groups[0][1].resource.size); // 96, the size of the uniform buffer.
console.log(groups[0][1].resource.members.length); // 3, members in ModelUniforms.
console.log(groups[0][1].resource.members[0].name); // "model", the name of the first member in the uniform buffer.
console.log(groups[0][1].resource.members[0].offset); // 0, the offset of 'model' in the uniform buffer.
console.log(groups[0][1].resource.members[0].size); // 64, the size of 'model'.
console.log(groups[0][1].resource.members[0].type.name); // "mat4x4", the type of 'model'.
console.log(groups[0][1].resource.members[0].type.format.name); // "f32", the format of the mat4x4.
console.log(groups[0][2].type); // "sampler"
console.log(groups[0][3].type); // "texture"
console.log(groups[0][3].resource.type.name); // "texture_2d"
console.log(groups[0][3].resource.type.format.name); // "f32"
Calculate the member information for a uniform buffer block:
import { WgslReflect } from "wgsl_reflect";
// WgslReflect can calculate the size and offset for members of a uniform buffer block.
const shader = `
struct A { // align(8) size(32)
u: f32, // offset(0) align(4) size(4)
v: f32, // offset(4) align(4) size(4)
w: vec2<f32>, // offset(8) align(8) size(8)
@size(16) x: f32 // offset(16) align(4) size(16)
}
struct B { // align(16) size(208)
a: vec2<f32>, // offset(0) align(8) size(8)
// -- implicit member alignment padding -- // offset(8) size(8)
b: vec3<f32>, // offset(16) align(16) size(12)
c: f32, // offset(28) align(4) size(4)
d: f32, // offset(32) align(4) size(4)
// -- implicit member alignment padding -- // offset(36) size(12)
@align(16) e: A, // offset(48) align(16) size(32)
f: vec3<f32>, // offset(80) align(16) size(12)
// -- implicit member alignment padding -- // offset(92) size(4)
g: @stride(32) array<A, 3>, // offset(96) align(8) size(96)
h: i32, // offset(192) align(4) size(4)
// -- implicit struct size padding -- // offset(196) size(12)
}
@group(0) @binding(0)
var<uniform> uniform_buffer: B;`;
const reflect = new WgslReflect(shader);
// Get the buffer info for the uniform var 'uniform_buffer'.
const info = reflect.getUniformBufferInfo(reflect.uniforms[0]);
console.log(info.size); // 208, the size of the uniform buffer in bytes
console.log(info.group); // 0
console.log(info.binding); // 0
console.log(info.members.length); // 8, members in B
console.log(info.members[0].name); // "a"
console.log(info.members[0].offset); // 0, the offset of 'a' in the buffer
console.log(info.members[0].size); // 8, the size of 'a' in bytes
console.log(info.members[0].type.name); // "vec2", the type of 'a'
console.log(info.members[0].type.format.name); // "f32", the format of the vec2.
console.log(info.members[4].name); // "e"
console.log(info.members[4].offset); // 48, the offset of 'e' in the buffer
console.log(info.members[4].size); // 32, the size of 'e' in the buffer