@eyhn/msgpack-stream
v2.8.4
Published
MessagePack for ECMA-262/JavaScript/TypeScript
Downloads
12,602
Maintainers
Readme
MessagePack for JavaScript/ECMA-262
This is a JavaScript/ECMA-262 implementation of MessagePack, an efficient binary serilization format:
https://msgpack.org/
This library is a universal JavaScript, meaning it is compatible with all the major browsers and NodeJS. In addition, because it is implemented in TypeScript, type definition files (d.ts
) are always up-to-date and bundled in the distribution.
Note that this is the second version of MessagePack for JavaScript. The first version, which was implemented in ES5 and was never released to npmjs.com, is tagged as classic.
Synopsis
import { deepStrictEqual } from "assert";
import { encode, decode } from "@eyhn/msgpack-stream";
const object = {
nil: null,
integer: 1,
float: Math.PI,
string: "Hello, world!",
binary: Uint8Array.from([1, 2, 3]),
array: [10, 20, 30],
map: { foo: "bar" },
timestampExt: new Date(),
};
const encoded: Uint8Array = encode(object);
deepStrictEqual(decode(encoded), object);
Table of Contents
- Synopsis
- Table of Contents
- Install
- API
encode(data: unknown, options?: EncodeOptions): Uint8Array
decode(buffer: ArrayLike<number> | BufferSource, options?: DecodeOptions): unknown
decodeMulti(buffer: ArrayLike<number> | BufferSource, options?: DecodeOptions): Generator<unknown, void, unknown>
decodeAsync(stream: ReadableStreamLike<ArrayLike<number> | BufferSource>, options?: DecodeAsyncOptions): Promise<unknown>
decodeArrayStream(stream: ReadableStreamLike<ArrayLike<number> | BufferSource>, options?: DecodeAsyncOptions): AsyncIterable<unknown>
decodeMultiStream(stream: ReadableStreamLike<ArrayLike<number> | BufferSource>, options?: DecodeAsyncOptions): AsyncIterable<unknown>
- Reusing Encoder and Decoder instances
- Extension Types
- Decoding a Blob
- MessagePack Specification
- Prerequisites
- Benchmark
- Distribution
- Deno Support
- Maintenance
- License
Install
This library is published to npmjs.com
as @eyhn/msgpack-stream.
npm install @eyhn/msgpack-stream
API
encode(data: unknown, options?: EncodeOptions): Uint8Array
It encodes data
into a single MessagePack-encoded object, and returns a byte array as Uint8Array
. It throws errors if data
is, or includes, a non-serializable object such as a function
or a symbol
.
for example:
import { encode } from "@eyhn/msgpack-stream";
const encoded: Uint8Array = encode({ foo: "bar" });
console.log(encoded);
If you'd like to convert an uint8array
to a NodeJS Buffer
, use Buffer.from(arrayBuffer, offset, length)
in order not to copy the underlying ArrayBuffer
, while Buffer.from(uint8array)
copies it:
import { encode } from "@eyhn/msgpack-stream";
const encoded: Uint8Array = encode({ foo: "bar" });
// `buffer` refers the same ArrayBuffer as `encoded`.
const buffer: Buffer = Buffer.from(encoded.buffer, encoded.byteOffset, encoded.byteLength);
console.log(buffer);
EncodeOptions
Name|Type|Default
----|----|----
extensionCodec | ExtensionCodec | ExtensionCodec.defaultCodec
maxDepth | number | 100
initialBufferSize | number | 2048
sortKeys | boolean | false
forceFloat32 | boolean | false
forceIntegerToFloat | boolean | false
ignoreUndefined | boolean | false
context | user-defined | -
decode(buffer: ArrayLike<number> | BufferSource, options?: DecodeOptions): unknown
It decodes buffer
that includes a MessagePack-encoded object, and returns the decoded object typed unknown
.
buffer
must be an array of bytes, which is typically Uint8Array
or ArrayBuffer
. BufferSource
is defined as ArrayBuffer | ArrayBufferView
.
The buffer
must include a single encoded object. If the buffer
includes extra bytes after an object or the buffer
is empty, it throws RangeError
. To decode buffer
that includes multiple encoded objects, use decodeMulti()
or decodeMultiStream()
(recommended) instead.
for example:
import { decode } from "@eyhn/msgpack-stream";
const encoded: Uint8Array;
const object = decode(encoded);
console.log(object);
NodeJS Buffer
is also acceptable because it is a subclass of Uint8Array
.
DecodeOptions
Name|Type|Default
----|----|----
extensionCodec | ExtensionCodec | ExtensionCodec.defaultCodec
maxStrLength | number | 4_294_967_295
(UINT32_MAX)
maxBinLength | number | 4_294_967_295
(UINT32_MAX)
maxArrayLength | number | 4_294_967_295
(UINT32_MAX)
maxMapLength | number | 4_294_967_295
(UINT32_MAX)
maxExtLength | number | 4_294_967_295
(UINT32_MAX)
context | user-defined | -
You can use max${Type}Length
to limit the length of each type decoded.
decodeMulti(buffer: ArrayLike<number> | BufferSource, options?: DecodeOptions): Generator<unknown, void, unknown>
It decodes buffer
that includes multiple MessagePack-encoded objects, and returns decoded objects as a generator. See also decodeMultiStream()
, which is an asynchronous variant of this function.
This function is not recommended to decode a MessagePack binary via I/O stream including sockets because it's synchronous. Instead, decodeMultiStream()
decodes a binary stream asynchronously, typically spending less CPU and memory.
for example:
import { decode } from "@eyhn/msgpack-stream";
const encoded: Uint8Array;
for (const object of decodeMulti(encoded)) {
console.log(object);
}
decodeAsync(stream: ReadableStreamLike<ArrayLike<number> | BufferSource>, options?: DecodeAsyncOptions): Promise<unknown>
It decodes stream
, where ReadableStreamLike<T>
is defined as ReadableStream<T> | AsyncIterable<T>
, in an async iterable of byte arrays, and returns decoded object as unknown
type, wrapped in Promise
.
This function works asynchronously, and might CPU resources more efficiently compared with synchronous decode()
, because it doesn't wait for the completion of downloading.
DecodeAsyncOptions
is the same as DecodeOptions
for decode()
.
This function is designed to work with whatwg fetch()
like this:
import { decodeAsync } from "@eyhn/msgpack-stream";
const MSGPACK_TYPE = "application/x-msgpack";
const response = await fetch(url);
const contentType = response.headers.get("Content-Type");
if (contentType && contentType.startsWith(MSGPACK_TYPE) && response.body != null) {
const object = await decodeAsync(response.body);
// do something with object
} else { /* handle errors */ }
decodeArrayStream(stream: ReadableStreamLike<ArrayLike<number> | BufferSource>, options?: DecodeAsyncOptions): AsyncIterable<unknown>
It is alike to decodeAsync()
, but only accepts a stream
that includes an array of items, and emits a decoded item one by one.
for example:
import { decodeArrayStream } from "@eyhn/msgpack-stream";
const stream: AsyncIterator<Uint8Array>;
// in an async function:
for await (const item of decodeArrayStream(stream)) {
console.log(item);
}
decodeMultiStream(stream: ReadableStreamLike<ArrayLike<number> | BufferSource>, options?: DecodeAsyncOptions): AsyncIterable<unknown>
It is alike to decodeAsync()
and decodeArrayStream()
, but the input stream
must consist of multiple MessagePack-encoded items. This is an asynchronous variant for decodeMulti()
.
In other words, it could decode an unlimited stream and emits a decoded item one by one.
for example:
import { decodeMultiStream } from "@eyhn/msgpack-stream";
const stream: AsyncIterator<Uint8Array>;
// in an async function:
for await (const item of decodeMultiStream(stream)) {
console.log(item);
}
This function is available since v2.4.0; previously it was called as decodeStream()
.
Reusing Encoder and Decoder instances
Encoder
and Decoder
classes is provided to have better performance by reusing instances:
import { deepStrictEqual } from "assert";
import { Encoder, Decoder } from "@eyhn/msgpack-stream";
const encoder = new Encoder();
const decoder = new Decoder();
const encoded: Uint8Array = encoder.encode(object);
deepStrictEqual(decoder.decode(encoded), object);
According to our benchmark, reusing Encoder
instance is about 20% faster
than encode()
function, and reusing Decoder
instance is about 2% faster
than decode()
function. Note that the result should vary in environments
and data structure.
Extension Types
To handle MessagePack Extension Types, this library provides ExtensionCodec
class.
This is an example to setup custom extension types that handles Map
and Set
classes in TypeScript:
import { encode, decode, ExtensionCodec } from "@eyhn/msgpack-stream";
const extensionCodec = new ExtensionCodec();
// Set<T>
const SET_EXT_TYPE = 0 // Any in 0-127
extensionCodec.register({
type: SET_EXT_TYPE,
encode: (object: unknown): Uint8Array | null => {
if (object instanceof Set) {
return encode([...object]);
} else {
return null;
}
},
decode: (data: Uint8Array) => {
const array = decode(data) as Array<unknown>;
return new Set(array);
},
});
// Map<T>
const MAP_EXT_TYPE = 1; // Any in 0-127
extensionCodec.register({
type: MAP_EXT_TYPE,
encode: (object: unknown): Uint8Array => {
if (object instanceof Map) {
return encode([...object]);
} else {
return null;
}
},
decode: (data: Uint8Array) => {
const array = decode(data) as Array<[unknown, unknown]>;
return new Map(array);
},
});
const encoded = encode([new Set<any>(), new Map<any, any>()], { extensionCodec });
const decoded = decode(encoded, { extensionCodec });
Not that extension types for custom objects must be [0, 127]
, while [-1, -128]
is reserved for MessagePack itself.
ExtensionCodec context
When you use an extension codec, it might be necessary to have encoding/decoding state to keep track of which objects got encoded/re-created. To do this, pass a context
to the EncodeOptions
and DecodeOptions
:
import { encode, decode, ExtensionCodec } from "@eyhn/msgpack-stream";
class MyContext {
track(object: any) { /*...*/ }
}
class MyType { /* ... */ }
const extensionCodec = new ExtensionCodec<MyContext>();
// MyType
const MYTYPE_EXT_TYPE = 0 // Any in 0-127
extensionCodec.register({
type: MYTYPE_EXT_TYPE,
encode: (object, context) => {
if (object instanceof MyType) {
context.track(object); // <-- like this
return encode(object.toJSON(), { extensionCodec, context });
} else {
return null;
}
},
decode: (data, extType, context) => {
const decoded = decode(data, { extensionCodec, context });
const my = new MyType(decoded);
context.track(my); // <-- and like this
return my;
},
});
// and later
import { encode, decode } from "@eyhn/msgpack-stream";
const context = new MyContext();
const encoded = = encode({myType: new MyType<any>()}, { extensionCodec, context });
const decoded = decode(encoded, { extensionCodec, context });
Handling BigInt with ExtensionCodec
This library does not handle BigInt by default, but you can handle it with ExtensionCodec
like this:
import { deepStrictEqual } from "assert";
import { encode, decode, ExtensionCodec } from "@eyhn/msgpack-stream";
const BIGINT_EXT_TYPE = 0; // Any in 0-127
const extensionCodec = new ExtensionCodec();
extensionCodec.register({
type: BIGINT_EXT_TYPE,
encode: (input: unknown) => {
if (typeof input === "bigint") {
if (input <= Number.MAX_SAFE_INTEGER && input >= Number.MIN_SAFE_INTEGER) {
return encode(parseInt(input.toString(), 10));
} else {
return encode(input.toString());
}
} else {
return null;
}
},
decode: (data: Uint8Array) => {
return BigInt(decode(data));
},
});
const value = BigInt(Number.MAX_SAFE_INTEGER) + BigInt(1);
const encoded: = encode(value, { extensionCodec });
deepStrictEqual(decode(encoded, { extensionCodec }), value);
The temporal module as timestamp extensions
There is a proposal for a new date/time representations in JavaScript:
- https://github.com/tc39/proposal-temporal
This library maps Date
to the MessagePack timestamp extension by default, but you can re-map the temporal module (or Temporal Polyfill) to the timestamp extension like this:
import { Instant } from "@std-proposal/temporal";
import { deepStrictEqual } from "assert";
import {
encode,
decode,
ExtensionCodec,
EXT_TIMESTAMP,
encodeTimeSpecToTimestamp,
decodeTimestampToTimeSpec,
} from "@eyhn/msgpack-stream";
const extensionCodec = new ExtensionCodec();
extensionCodec.register({
type: EXT_TIMESTAMP, // override the default behavior!
encode: (input: any) => {
if (input instanceof Instant) {
const sec = input.seconds;
const nsec = Number(input.nanoseconds - BigInt(sec) * BigInt(1e9));
return encodeTimeSpecToTimestamp({ sec, nsec });
} else {
return null;
}
},
decode: (data: Uint8Array) => {
const timeSpec = decodeTimestampToTimeSpec(data);
const sec = BigInt(timeSpec.sec);
const nsec = BigInt(timeSpec.nsec);
return Instant.fromEpochNanoseconds(sec * BigInt(1e9) + nsec);
},
});
const instant = Instant.fromEpochMilliseconds(Date.now());
const encoded = encode(instant, { extensionCodec });
const decoded = decode(encoded, { extensionCodec });
deepStrictEqual(decoded, instant);
This will become default in this library with major-version increment, if the temporal module is standardized.
Decoding a Blob
Blob
is a binary data container provided by browsers. To read its contents, you can use Blob#arrayBuffer()
or Blob#stream()
. Blob#stream()
is recommended if your target platform support it. This is because streaming
decode should be faster for large objects. In both ways, you need to use
asynchronous API.
async function decodeFromBlob(blob: Blob): unknown {
if (blob.stream) {
// Blob#stream(): ReadableStream<Uint8Array> (recommended)
return await decodeAsync(blob.stream());
} else {
// Blob#arrayBuffer(): Promise<ArrayBuffer> (if stream() is not available)
return decode(await blob.arrayBuffer());
}
}
MessagePack Specification
This library is compatible with the "August 2017" revision of MessagePack specification at the point where timestamp ext was added:
- [x] str/bin separation, added at August 2013
- [x] extension types, added at August 2013
- [x] timestamp ext type, added at August 2017
The living specification is here:
https://github.com/msgpack/msgpack
Note that as of June 2019 there're no official "version" on the MessagePack specification. See https://github.com/msgpack/msgpack/issues/195 for the discussions.
MessagePack Mapping Table
The following table shows how JavaScript values are mapped to MessagePack formats and vice versa.
Source Value|MessagePack Format|Value Decoded ----|----|---- null, undefined|nil|null (*1) boolean (true, false)|bool family|boolean (true, false) number (53-bit int)|int family|number (53-bit int) number (64-bit float)|float family|number (64-bit float) string|str family|string ArrayBufferView |bin family|Uint8Array (*2) Array|array family|Array Object|map family|Object (*3) Date|timestamp ext family|Date (*4)
- *1 Both
null
andundefined
are mapped tonil
(0xC0
) type, and are decoded intonull
- *2 Any
ArrayBufferView
s including NodeJS'sBuffer
are mapped tobin
family, and are decoded intoUint8Array
- *3 In handling
Object
, it is regarded asRecord<string, unknown>
in terms of TypeScript - *4 MessagePack timestamps may have nanoseconds, which will lost when it is decoded into JavaScript
Date
. This behavior can be overridden by registering-1
for the extension codec.
Prerequisites
This is a universal JavaScript library that supports major browsers and NodeJS.
ECMA-262
- ES5 language features
- ES2018 standard library, including:
- Typed arrays (ES2015)
- Async iterations (ES2018)
- Features added in ES2015-ES2018
ES2018 standard library used in this library can be polyfilled with core-js.
If you support IE11, import core-js
in your application entrypoints, as this library does in testing for browsers.
NodeJS
NodeJS v10 is required, but NodeJS v12 or later is recommended because it includes the V8 feature of Improving DataView performance in V8.
NodeJS before v10 will work by importing @eyhn/msgpack-stream/dist.es2015+umd/msgpack
.
TypeScript Compiler / Type Definitions
This module requires type definitions of AsyncIterator
, SourceBuffer
, whatwg streams, and so on. They are provided by "lib": ["ES2021", "DOM"]
in tsconfig.json
.
Regarding the TypeScript compiler version, only the latest TypeScript is tested in development.
Benchmark
Run-time performance is not the only reason to use MessagePack, but it's important to choose MessagePack libraries, so a benchmark suite is provided to monitor the performance of this library.
V8's built-in JSON has been improved for years, esp. JSON.parse()
is significantly improved in V8/7.6, it is the fastest deserializer as of 2019, as the benchmark result bellow suggests.
However, MessagePack can handles binary data effectively, actual performance depends on situations. You'd better take benchmark on your own use-case if performance matters.
Benchmark on NodeJS/v18.1.0 (V8/10.1)
operation | op | ms | op/s ----------------------------------------------------------------- | ------: | ----: | ------: buf = Buffer.from(JSON.stringify(obj)); | 902100 | 5000 | 180420 obj = JSON.parse(buf.toString("utf-8")); | 898700 | 5000 | 179740 buf = require("msgpack-lite").encode(obj); | 411000 | 5000 | 82200 obj = require("msgpack-lite").decode(buf); | 246200 | 5001 | 49230 buf = require("@eyhn/msgpack-stream").encode(obj); | 843300 | 5000 | 168660 obj = require("@eyhn/msgpack-stream").decode(buf); | 489300 | 5000 | 97860 buf = /* @eyhn/msgpack-stream / encoder.encode(obj); | 1154200 | 5000 | 230840 obj = / @eyhn/msgpack-stream */ decoder.decode(buf); | 448900 | 5000 | 89780
Note that JSON
cases use Buffer
to emulate I/O where a JavaScript string must be converted into a byte array encoded in UTF-8, whereas MessagePack modules deal with byte arrays.
Distribution
NPM / npmjs.com
The NPM package distributed in npmjs.com includes both ES2015+ and ES2015 files:
dist/
is compiled into ES2019 with CommomJS, provided for NodeJS v10dist.es2015+umd/
is compiled into ES2015 with UMDdist.es2015+umd/msgpack.min.js
- the minified filedist.es2015+umd/msgpack.js
- the non-minified file
dist.es2015+esm/
is compiled into ES2015 with ES modules, provided for webpack-like bundlers and NodeJS's ESM-mode
If you use NodeJS and/or webpack, their module resolvers use the suitable one automatically.
CDN / unpkg.com
This library is available via CDN:
<script crossorigin src="https://unpkg.com/@eyhn/msgpack-stream"></script>
It loads MessagePack
module to the global object.
Deno Support
You can use this module on Deno.
See example/deno-*.ts
for examples.
deno.land/x
is not supported yet.
Maintenance
Testing
For simple testing:
npm run test
Continuous Integration
This library uses Travis CI.
test matrix:
- TypeScript targets
target=es2019
/target=es5
- JavaScript engines
- NodeJS, browsers (Chrome, Firefox, Safari, IE11, and so on)
See test:* in package.json and .travis.yml for details.
Release Engineering
# run tests on NodeJS, Chrome, and Firefox
make test-all
# edit the changelog
code CHANGELOG.md
# bump version
npm version patch|minor|major
# run the publishing task
make publish
Updating Dependencies
npm run update-dependencies
License
Copyright 2019 The MessagePack community.
This software uses the ISC license:
https://opensource.org/licenses/ISC
See LICENSE for details.