@executorch/runtime-cpu
v0.0.7
Published
JavaScript bindings for [ExecuTorch](https://pytorch.org/executorch-overview), a runtime for inferencing PyTorch models.
Downloads
365
Readme
ExecuTorch.js
JavaScript bindings for ExecuTorch, a runtime for inferencing PyTorch models.
Supported platforms
JavaScript runtimes:
- Node.js >= 22 (and compatible runtimes like Electron and Bun)
- Plan on: WebAssembly, React Native
Platforms:
- Linux x64
- macOS arm64
- macOS x64
- Some ops required for running LLMs are not supported yet.
- Plan on: Windows, Linux arm64, iOS, Android
Backends:
Install
You can install ExecuTorch.js from npm:
$ npm install executorch
The default executorch
package includes support for all backends, for users
who want to reduce binary size, you can install packages with specific backeds:
| | CPU | MPS | Vulkan | XNNPACK | |-----------------------------|-----|-----|--------|---------| | executorch | ✔️ | ✔️ | ❌ | ✔️ | | @executorch/runtime | ✔️ | 🍏 | ❌ | 🐧 | | @executorch/runtime-all | ✔️ | ✔️ | ❌ | ✔️ | | @executorch/runtime-cpu | ✔️ | ❌ | ❌ | ❌ | | @executorch/runtime-mps | ✔️ | ✔️ | ❌ | ❌ | | @executorch/runtime-xnnpack | ✔️ | ❌ | ❌ | ✔️ |
The @executorch/runtime
package is a speical one that uses MPS backend on
macOS and XNNPACK backend for other platforms.
For debugging purpose each package also has a Debug version that can be enabled
by setting the npm_config_debug
environment variable when installing:
$ env npm_config_debug=true npm install @executorch/runtime-xnnpack
Quick start
Download the mobilenet model:
$ wget https://huggingface.co/frost-beta/mobilenet-v2-executorch-cpu/resolve/main/mv2.pte
Run following code with Node.js:
import {Module, Tensor} from 'executorch';
// A tensor of shape [ 1, 3, 224, 224 ].
const input = Array.from({length: 1}, () =>
Array.from({length: 3}, () =>
Array.from({length: 224}, () =>
Array.from({length: 224}, () => Math.random()))));
const mod = new Module('mv2.pte');
await mod.load();
const output = await mod.forward(new Tensor(input));
console.log(output.tolist());
Examples
- llama3-torch.js - A simple chat CLI for LLama 3.
APIs
/**
* Load exported edge PyTorch models.
*/
export declare class Module {
/**
* The methods of this class are dynamically loaded.
*/
[key: string]: Function;
/**
* @param filePathOrBuffer - When a string is passed, it is treated as file
* path and will be loaded with mmap. When a Uint8Array is passed, its content
* is used as the model file.
*/
constructor(filePathOrBuffer: string | Uint8Array);
/**
* Load the model.
*
* @remarks
*
* After loading, the model's methods will be added to the instance
* dynamically, with both async and async versions for each method, the sync
* version will have a "Sync" suffix appended to its name.
*/
load(): Promise<void>;
/**
* Load the model synchronously.
*/
loadSync(): void;
/**
* Return if any model has been loaded.
*/
isLoaded(): boolean;
/**
* Return names of loaded model's methods.
*/
getMethodNames(): string[];
}
/**
* Data type.
*/
export declare enum DType {
Uint8,
Int8,
Int16,
Int32,
Int64,
Float16,
Float32,
Float64,
Bool,
BFloat16
}
type Nested<T> = Nested<T>[] | T;
/**
* A multi-dimensional matrix containing elements of a single data type.
*/
export declare class Tensor {
/**
* The tensor's data stored as JavaScript Uint8Array.
*/
readonly data: Uint8Array;
/**
* Data-type of the tensor’s elements.
*/
readonly dtype: DType;
/**
* Array of tensor dimensions.
*/
readonly shape: number[];
/**
* @param input - A scalar, or a (nested) Array, or a Uint8Array buffer.
* @param dtype - The data type of the elements.
* @param options - Extra information of the tensor.
* @param options.shape
* @param options.dimOrder
* @param options.strides
*/
constructor(input: Nested<boolean | number> | Uint8Array,
dtype?: DType,
{ shape, dimOrder, strides }?: { shape?: number[]; dimOrder?: number[]; strides?: number[]; });
/**
* Return the tensor as a scalar.
*/
item(): number | boolean;
/**
* Return the tensor as a scalar or (nested) Array.
*/
tolist(): Nested<number | boolean>;
/**
* Return a TypedArray view of tensor's data.
*/
toTypedArray(): Int8Array | Uint8Array | Int16Array | Int32Array | Float32Array | Float64Array;
/**
* A permutation of the dimensions, from the outermost to the innermost one.
*/
get dimOrder(): number[];
/**
* Array of indices to step in each dimension when traversing the tensor.
*/
get strides(): number[];
/**
* Number of tensor dimensions.
*/
get ndim(): number;
/**
* Number of elements in the tensor.
*/
get size(): number;
/**
* Total bytes consumed by the elements of the tensor.
*/
get nbytes(): number;
/**
* Length of one tensor element in bytes.
*/
get itemsize(): number;
}
/**
* Samples from the given tensor using a softmax over logits.
*/
export declare function sample(logits: Tensor,
{
temperature = 1,
topP = 1,
}?: { temperature?: number; topP?: number }): number;
Development
Source code architecture:
src/
- C++ source code.lib/
- TypeScript source code.bindings.js
/bindings.d.ts
- Glue code between C++ and TypeScript.install.js
- Script that downloads compiled binaries when installing.tests/
- Tests for TypeScript code.build/
- Generated project files and binaries from C++ code.dist/
- Generated JavaScript code from TypeScript code.