npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@ericrovell/rational

v1.0.1

Published

Rational is rational numbers library written in JavaScript

Downloads

19

Readme

Rational

Rational is JavaScript library for rational numbers manipulations.

Features

  • Build-in Types;
  • Dependency-free;
  • Extendable;
  • Feature rich;
  • Immutable;
  • Simple chainable API;
  • Types included;
  • Works in a browser and Node.js;

Getting started

Package available via npm:

npm i @ericrovell/rational
import { rational } from "@ericrovell/rational";

rational(2, 3).toString();            // -> "2/3"
rational([ 2, 3] ).toString();        // -> "2/3"
rational({ n: 2, d: 3 }).toString();  // -> "2/3"

Parsing

Parses the given input and created a new Rational instance.

rational(1, 2);
rational(0.5);
rational([ 1, 2 ]);
rational([ 1 ]);
rational({ n: 1, d: 2 });
rational("1/2");
rational("-1/2");
rational("+3/-2");
rational(".(1)");
rational("-0.1(2)");
rational("1.23(456)");
rational("1.12'5''");
rational("7'5''");

Supported input

Parses the given input from two integer arguments and returns a new Rational instance.

rational(1, 2); // 1/2
rational(5);    // 5/1

Parses the given float and returns a new Rational instance.

rational(0.5); // 1/2

Parses the given ratio from (2-integer tuple) and returns a new Rational instance.

rational([]);        // 0/1
rational([ 2 ]);     // 2/1
rational([ 1, 2 ]);  // 1/2

Parses the given Fraction object and returns a new Rational instance.

rational({ n: -1, d: 2 });          // -1/2
rational({ int: -1, n: 2, d: 3 });  // -1 2/3

Note: integral part if specified determines the sign of the result.

rational({ int: -1, n: -2, d: 3 });  // -1 2/3

Parses the given fractional string in form {sign?}{int?} {sign?}{numerator}/{sign?}{denominator} and returns a new Rational instance.

rational("1/2");    // 1/2
rational("1 1/2");  // 1 1/2
rational("-2 1/4"); // -2 1/4

Note: integral part if specified determines the sign of the result.

rational("-2 -1/4"); // -2 1/4

Parses the given RepeatingDecimal object and returns a new Rational instance.

rational({ sign: -1, int: 1, nonrepeat: "2", repeat: "3" }); //  -7/30
rational({ repeat: 5 });                                     // 5/9

Parses the given repeating decimal string in form {sign?}{int?}.{non-repeating}?({repeating}) and returns a new Rational instance.

rational(".(1)");    //  1/9
rational("-0.1(2)"); // -2/15

Parses the given Degrees object and returns a new Rational instance.

rational({ deg: 1, min: 1, sec: 1 }); // 3661/3600
rational({ sec: 7 });                 // 7/60

Parses the given degrees string in form {sign?}{degrees?}.{minutes'?}{seconds''?} and returns a new Rational instance.

rational("1.12'5''") //  173/144
rational("-1.2'5''") // -149/144
rational("7'5''")    //   17/144
rational("-2'5''")   //   -5/144

API

Returns the absolute value of the rational number as new Rational instance.

rational(0, 2).abs.toString();   // -> "0/2"
rational(-1, 2).abs.toString();  // -> "1/2"
rational(1, -2).abs.toString();  // -> "1/2"
rational(-1, -2).abs.toString(); // -> "1/2"
rational(1, 2).abs.toString();   // -> "1/2"

Performs the addition and returns the sum as new Rational instance.

rational(1, 2)
  .add(1, 4)
  .toString(); // -> "3/4"

rational(1, 2)
  .add(rational(1, 4))
  .toString(); // -> "3/4"

Returns the rational number rounded up to the next largest decimal place.

rational(29, 7).ceil() // -> 5
rational(29, 7).ceil(1) // -> 4.2
rational(29, 7).ceil(2) // -> 4.15

Compares the rational number with another. Results are interpreted as:

- comparable is greater ->  1;
- comparable is smaller -> -1;
- comparable is equal   ->  0.
rational(1, 2).compare(2, 4); // ->  0
rational(1, 2).compare(3, 4); // -> -1
rational(1, 2).compare(1, 4); // ->  1

Non-strict inequalities can be performed as such:

rational.compare(1/2) >= 0 the same as >=
rational.compare(1/2) <= 0 the same as <=

Returns the continued fraction representation of the rational. The first element holds the integral part.

rational(415, 93).continued // -> [ 4, 2, 6, 7 ]

Returns the denominator value of the rational number.

rational(1, 2).denominator; // -> 2

Performs the division and returns the quotient as new Rational instance.

rational(1, 2)
  .div(1, 4)
  .toString(); // -> "2/1"

rational(1, 2)
  .div(rational(1, 4))
  .toString(); // -> "2/1"

Checks if two rational numbers are divisible.

rational(1, 2).divisible(1, 4) // -> true
rational(5, 8).divisible(2, 7) // -> false

Returns the rational number rounded down to the next smallest or equal decimal place.

rational(29, 7).floor() // -> 4
rational(29, 7).floor(1) // -> 4.1
rational(29, 7).floor(2) // -> 4.14

Returns the fractional part of the rational number as a new Rational instance.

rational(1, 2).fractionalPart.toString(); // -> "1/2"
rational(3, 2).fractionalPart.toString(); // -> "1/2"

Calculates the GCD of two rational numbers and returns a new Rational instance.

rational(5, 8).gcd(3, 7) // 1/56
rational(2, 3).gcd(7, 5) // 1/15

Returns the integral part of the rational number.

rational(1, 2).integralPart; // -> 0
rational(3, 2).integralPart; // -> 1

Calculates the LCM of two rational numbers and returns a new Rational instance.

rational(5, 8).lcm(3, 7) // 15/1

Calculates the mathematical correct modulo of two rational numbers.

rational("-13/3").mathmod("7/8")   // -> 1/24
rational("-13/7").mathmod("19/11") // -> 123/77

Calculates the modulo of two rational numbers.

rational("13/3").mod("7/8").toString()   // -> "5/6"
rational("13/7").mod("19/11").toString() // -> "10/77"

Performs the multiplication and returns the product as new Rational instance.

rational(1, 2)
  .mul(1, 4)
  .toString(); // -> "1/8"

rational(1, 2)
  .mul(rational(1, 4))
  .toString(); // -> "1/8"

Returns the numerator value of the rational number.

rational(1, 2).numerator; // -> 1

Returns the opposite rational number as new Rational instance.

rational(0, 2).opposite.toString();   // -> "0/2"
rational(-1, 2).opposite.toString();  // -> "1/2"
rational(1, -2).opposite.toString();  // -> "1/2"
rational(-1, -2).opposite.toString(); // -> "-1/2"
rational(1, 2).opposite.toString();   // -> "-1/2"

Returns the boolean indicating if the rational number could be represented as proper fraction.

rational(1, 2).proper; // -> true;
rational(3, 2).proper; // -> false;

Calculates the exponentiation result of two rational numbers. If the result is rational returns a new Rational instance. If the result irrational the null returned instead.

rational(27).pow(2, 3)?.toString() // -> "9/1"
rational(2).pow(1, 2)?.toString()  // -> null

Returns the reciprocal as new Rational instance.

rational(1, 2).reciprocal.toString(); // -> "2/1";
rational(3, 2).reciprocal.toString(); // -> "3/2";

Returns the boolean indicating if the rational number could be represents a repeating decimal.

rational(1, 3).repeating; // -> true;
rational(1, 4).repeating; // -> false;

Returns the rational number rounded to fixed decimal places.

rational(23, 8).round() // -> 3
rational(23, 8).round(1) // -> 2.9
rational(23, 8).round(2) // -> 2.88

Returns the sign of the rational number.

rational(0, 2).sign;   // ->  0
rational(-1, 2).sign;  // -> -1
rational(1, -2).sign;  // -> -1
rational(-1, -2).sign; // ->  1
rational(1, 2).sign;   // ->  1

Performs the subtraction and returns the difference as new Rational instance.

rational(1, 2)
  .sub(1, 4)
  .toString(); // -> "1/4"

rational(1, 2)
  .sub(rational(1, 4))
  .toString(); // -> "1/4"

Returns a Ratio string representation.

rational(1, 2).toString()                  // -> "1/2";
rational("1 1/2").toString()               // -> "3/2";
rational({ int: 1, n: 1, d: 3}).toString() // -> "4/3";
rational("0.12(34)").toString()            // -> "611/4950";

To get a proper fraction string, use the first argument:

rational("1 1/2").toString(true)                    // -> "1 1/2";
rational(1, 2).toString(true)                       // -> "1/2";
rational({ int: 1, n: 1, d: 3 }).toString(true)      // -> "1 1/3";

If the second argument is provided, the decimal string is returned. The value represents number of places:

rational(1, 2).toString(false, 1)                    // -> "0.5";
rational("1 1/2").toString(false, 5)                 // -> "1.5";

In case the rational is a repeating decimal, it's representation is preserved:

rational("1 1/3").toString(false, 5)   // -> "1.(3)";

Returns a boolean indicating the parsing operation success. On failed attempt the rational number defaults to 0.

rational(1, 2).valid;  // -> true
rational("hi!").valid; // -> false

Returns a rational number decimal approximation:

rational(1, 2).valueOf()                     // -> 0.5;
rational("1 1/2").valueOf()                  // -> 1.5;
rational({ int: 1, n: 1, d: 3}).valueOf(5)   // -> 1.33333;
rational("0.12(34)").valueOf()               // -> 0.123434343434343;

Method is useful for coercion:

rational(1, 2) + rational(1, 4) // -> 0.75
+rational(1, 5) // -> 0.2

Extending

To extend the functionality for your needs, extend the parent Rational class:

import { Rational } from "@ericrovell/rational";

class RationalExtended extends Rational {
	constructor(input: Input = 0, denominator = 1) {
		super(input, denominator);
	}

	get ratio() {
		return [ this.numerator, this.denominator ];
	}
}

const instance = new RationalExtended(1, 2);
instance.ratio; // -> [ 1, 2 ]

Types

Tha package includes all necessary types useful for all possible valid input options are available for import:

export type {
	Degrees,
	Fraction,
	Ratio,
	RepeatingDecimal,
	StringDegrees,
	StringFraction,
	StringRepeatingDecimal
} from "@ericrovell/rational";

Tests

To run the tests use the npm run test command.