@ekycsolutions/ml-vision
v0.5.3-alpha.1
Published
ekycsolutions computer vision api
Downloads
5
Readme
@ekycsolutions/ml-vision
Getting Started
- create a new nodejs project,
mkdir my-awesome-app && cd my-awesome-app && npm init -y
- install your choice of server library, eg:
npm i fastify
- for
ml-vision
sdk, install the librarynpm i got @ekycsolutions/client @ekycsolutions/ml-vision
- create an account at https://console.ews.ekycsolutions.com, create a project, create an api credential and name it
api-key.json
- prepare an id card photo to be used for this testing and the following code will call an
ocr
request to doid-ocr
so save the code atmain.mjs
// my-awesome-app/main.mjs
// NOTE: the below code is for testing purpose,
// please follow javascript best practices and
// apply some coding patterns
// for api references, please visit: https://docs.ews.ekycsolutions.com
import path from 'path';
import Fastify from 'fastify';
import { EkycClient } from '@ekycsolutions/client';
import { MLVision } from '@ekycsolutions/ml-vision';
const ekycClient = new EkycClient({
auth: {
clientCertSavePath: '/tmp/client.cert.pem',
clientCertKeySavePath: '/tmp/client.key.pem',
apiKeyPath: path.resolve('./', 'api-key.json'),
},
});
const mlVision = new MLVision(ekycClient);
const fastify = Fastify({
logger: true,
});
fastify.post('/test-id-ocr', async (req, reply) => {
const result = await mlVision.ocr({
isRaw: true,
objectType: 'national_id',
imageUrl: req.body['imageUrl'],
});
reply.send(result);
});
fastify.listen(5000, (err) => {
if (err) {
fastify.log.error(err);
process.exit(1);
}
});
- run the server
node main.mjs
- test the endpoint
curl -X POST http://localhost:5000/test-id-ocr -H 'Content-Type: application/json' -d '{"imageUrl": "https://example.com/sample-national-id.jpg"}'