@effect/typeclass
v0.29.12
Published
A collection of reusable typeclasses for the Effect ecosystem
Downloads
87,669
Keywords
Readme
Introduction
Welcome to the documentation for @effect/typeclass
, a collection of re-usable typeclasses for the Effect ecosystem.
The functional abstractions in @effect/typeclass
can be broadly divided into two categories.
- Abstractions For Concrete Types - These abstractions define properties of concrete types, such as
number
andstring
, as well as ways of combining those values. - Abstractions For Parameterized Types - These abstractions define properties of parameterized types such as
ReadonlyArray
andOption
and ways of combining them.
Concrete Types
Members and derived functions
Note: members are in bold.
Bounded
A type class used to name the lower limit and the upper limit of a type.
Extends:
Order
| Name | Given | To |
| ------------ | ------------ | ------------ |
| maxBound | | A
|
| minBound | | A
|
| reverse | Bounded<A>
| Bounded<A>
|
| clamp | A
| A
|
Monoid
A Monoid
is a Semigroup
with an identity. A Monoid
is a specialization of a
Semigroup
, so its operation must be associative. Additionally,
x |> combine(empty) == empty |> combine(x) == x
. For example, if we have Monoid<String>
,
with combine
as string concatenation, then empty = ""
.
Extends:
Semigroup
| Name | Given | To |
| -------------- | ------------------------------------- | ----------------------------- |
| empty | | A
|
| combineAll | Iterable<A>
| A
|
| reverse | Monoid<A>
| Monoid<A>
|
| tuple | [Monoid<A>, Monoid<B>, ...]
| Monoid<[A, B, ...]>
|
| struct | { a: Monoid<A>, b: Monoid<B>, ... }
| Monoid<{ a: A, b: B, ... }>
|
| min | Bounded<A>
| Monoid<A>
|
| max | Bounded<A>
| Monoid<A>
|
Semigroup
A Semigroup
is any set A
with an associative operation (combine
):
x |> combine(y) |> combine(z) == x |> combine(y |> combine(z))
| Name | Given | To |
| --------------- | ------------------------------------------- | -------------------------------- |
| combine | A
, A
| A
|
| combineMany | A
, Iterable<A>
| A
|
| reverse | Semigroup<A>
| Semigroup<A>
|
| tuple | [Semigroup<A>, Semigroup<B>, ...]
| Semigroup<[A, B, ...]>
|
| struct | { a: Semigroup<A>, b: Semigroup<B>, ... }
| Semigroup<{ a: A, b: B, ... }>
|
| min | Order<A>
| Semigroup<A>
|
| max | Order<A>
| Semigroup<A>
|
| constant | A
| Semigroup<A>
|
| intercalate | A
, Semigroup<A>
| Semigroup<A>
|
| first | | Semigroup<A>
|
| last | | Semigroup<A>
|
Parameterized Types
Parameterized Types Hierarchy
flowchart TD
Alternative --> SemiAlternative
Alternative --> Coproduct
Applicative --> Product
Coproduct --> SemiCoproduct
SemiAlternative --> Covariant
SemiAlternative --> SemiCoproduct
SemiApplicative --> SemiProduct
SemiApplicative --> Covariant
Applicative --> SemiApplicative
Chainable --> FlatMap
Chainable ---> Covariant
Monad --> FlatMap
Monad --> Pointed
Pointed --> Of
Pointed --> Covariant
Product --> SemiProduct
Product --> Of
SemiProduct --> Invariant
Covariant --> Invariant
SemiCoproduct --> Invariant
Members and derived functions
Note: members are in bold.
Alternative
Extends:
SemiAlternative
Coproduct
Applicative
Extends:
SemiApplicative
Product
| Name | Given | To |
| ---------- | ----------- | -------------- |
| liftMonoid | Monoid<A>
| Monoid<F<A>>
|
Bicovariant
A type class of types which give rise to two independent, covariant functors.
| Name | Given | To |
| --------- | -------------------------------- | ---------- |
| bimap | F<E1, A>
, E1 => E2
, A => B
| F<E2, B>
|
| mapLeft | F<E1, A>
, E1 => E2
| F<E2, A>
|
| map | F<A>
, A => B
| F<B>
|
Chainable
Extends:
FlatMap
Covariant
| Name | Given | To |
| -------------- | ----------------------------------- | ---------------------- |
| tap | F<A>
, A => F<B>
| F<A>
|
| andThenDiscard | F<A>
, F<B>
| F<A>
|
| bind | F<A>
, name: string
, A => F<B>
| F<A & { [name]: B }>
|
Contravariant
Contravariant functors.
Extends:
Invariant
| Name | Given | To |
| -------------------- | ------------------- | --------- |
| contramap | F<A>
, B => A
| F<B>
|
| contramapComposition | F<G<A>>
, A => B
| F<G<B>>
|
| imap | contramap
| imap
|
Coproduct
Coproduct
is a universal monoid which operates on kinds.
This type class is useful when its type parameter F<_>
has a
structure that can be combined for any particular type, and which
also has a "zero" representation. Thus, Coproduct
is like a Monoid
for kinds (i.e. parametrized types).
A Coproduct<F>
can produce a Monoid<F<A>>
for any type A
.
Here's how to distinguish Monoid
and Coproduct
:
Monoid<A>
allowsA
values to be combined, and also means there is an "empty"A
value that functions as an identity.Coproduct<F>
allows twoF<A>
values to be combined, for anyA
. It also means that for anyA
, there is an "zero"F<A>
value. The combination operation and zero value just depend on the structure ofF
, but not on the structure ofA
.
Extends:
SemiCoproduct
| Name | Given | To |
| ---------------- | ---------------- | -------------- |
| zero | | F<A>
|
| coproductAll | Iterable<F<A>>
| F<A>
|
| getMonoid | | Monoid<F<A>>
|
Covariant
Covariant functors.
Extends:
Invariant
| Name | Given | To |
| -------------- | ------------------- | --------- |
| map | F<A>
, A => B
| F<B>
|
| mapComposition | F<G<A>>
, A => B
| F<G<B>>
|
| imap | map
| imap
|
| flap | A
, F<A => B>
| F<B>
|
| as | F<A>
, B
| F<B>
|
| asUnit | F<A>
| F<void>
|
Filterable
Filterable<F>
allows you to map
and filter out elements simultaneously.
| Name | Given | To |
| ----------------------- | ------------------------------ | -------------------- |
| partitionMap | F<A>
, A => Either<B, C>
| [F<B>, F<C>]
|
| filterMap | F<A>
, A => Option<B>
| F<B>
|
| compact | F<Option<A>>
| F<A>
|
| separate | F<Either<A, B>>
| [F<A>, F<B>]
|
| filter | F<A>
, A => boolean
| F<A>
|
| partition | F<A>
, A => boolean
| [F<A>, F<A>]
|
| partitionMapComposition | F<G<A>>
, A => Either<B, C>
| [F<G<B>>, F<G<C>>]
|
| filterMapComposition | F<G<A>>
, A => Option<B>
| F<G<B>>
|
FlatMap
| Name | Given | To |
| ------------------- | ------------------------ | ----------- |
| flatMap | F<A>
, A => F<B>
| F<B>
|
| flatten | F<F<A>>
| F<A>
|
| andThen | F<A>
, F<B>
| F<B>
|
| composeKleisliArrow | A => F<B>
, B => F<C>
| A => F<C>
|
Foldable
Data structures that can be folded to a summary value.
In the case of a collection (such as ReadonlyArray
), these
methods will fold together (combine) the values contained in the
collection to produce a single result. Most collection types have
reduce
methods, which will usually be used by the associated
Foldable<F>
instance.
| Name | Given | To |
| ------------------- | ----------------------------------------- | ------------------ |
| reduce | F<A>
, B
, (B, A) => B
| B
|
| reduceComposition | F<G<A>>
, B
, (B, A) => B
| B
|
| reduceRight | F<A>
, B
, (B, A) => B
| B
|
| foldMap | F<A>
, Monoid<M>
, A => M
| M
|
| toReadonlyArray | F<A>
| ReadonlyArray<A>
|
| toReadonlyArrayWith | F<A>
, A => B
| ReadonlyArray<B>
|
| reduceKind | Monad<G>
, F<A>
, B
, (B, A) => G<B>
| G<B>
|
| reduceRightKind | Monad<G>
, F<A>
, B
, (B, A) => G<B>
| G<B>
|
| foldMapKind | Coproduct<G>
, F<A>
, (A) => G<B>
| G<B>
|
Invariant
Invariant functors.
| Name | Given | To |
| --------------- | ----------------------------- | ------------------ |
| imap | F<A>
, A => B
, B => A
| F<B>
|
| imapComposition | F<G<A>>
, A => B
, B => A
| F<G<B>>
|
| bindTo | F<A>
, name: string
| F<{ [name]: A }>
|
| tupled | F<A>
| F<[A]>
|
Monad
Allows composition of dependent effectful functions.
Extends:
FlatMap
Pointed
Of
| Name | Given | To |
| ------------- | ----- | --------- |
| of | A
| F<A>
|
| ofComposition | A
| F<G<A>>
|
| unit | | F<void>
|
| Do | | F<{}>
|
Pointed
Extends:
Covariant
Of
Product
Extends:
SemiProduct
Of
| Name | Given | To |
| -------------- | --------------------------- | ------------------------ |
| productAll | Iterable<F<A>>
| F<ReadonlyArray<A>>
|
| tuple | [F<A>, F<B>, ...]
| F<[A, B, ...]>
|
| struct | { a: F<A>, b: F<B>, ... }
| F<{ a: A, b: B, ... }>
|
SemiAlternative
Extends:
SemiCoproduct
Covariant
SemiApplicative
Extends:
SemiProduct
Covariant
| Name | Given | To |
| -------------- | ------------------- | ---------------------------- |
| liftSemigroup | Semigroup<A>
| Semigroup<F<A>>
|
| ap | F<A => B>
, F<A>
| F<B>
|
| andThenDiscard | F<A>
, F<B>
| F<A>
|
| andThen | F<A>
, F<B>
| F<B>
|
| lift2 | (A, B) => C
| (F<A>, F<B>) => F<C>
|
| lift3 | (A, B, C) => D
| (F<A>, F<B>, F<C>) => F<D>
|
SemiCoproduct
SemiCoproduct
is a universal semigroup which operates on kinds.
This type class is useful when its type parameter F<_>
has a
structure that can be combined for any particular type. Thus,
SemiCoproduct
is like a Semigroup
for kinds (i.e. parametrized
types).
A SemiCoproduct<F>
can produce a Semigroup<F<A>>
for any type A.
Here's how to distinguish Semigroup
and SemiCoproduct
:
Semigroup<A>
allows twoA
values to be combined.SemiCoproduct<F>
allows twoF<A>
values to be combined, for anyA
. The combination operation just depends on the structure ofF
, but not the structure ofA
.
Extends:
Invariant
| Name | Given | To |
| ----------------- | ---------------- | ----------------- |
| coproduct | F<A>
, F<B>
| F<A \| B>
|
| coproductMany | Iterable<F<A>>
| F<A>
|
| getSemigroup | | Semigroup<F<A>>
|
| coproductEither | F<A>
, F<B>
| F<Either<A, B>>
|
SemiProduct
Extends:
Invariant
| Name | Given | To |
| ---------------------- | ------------------------------ | -------------------------------- |
| product | F<A>
, F<B>
| F<[A, B]>
|
| productMany | F<A>
, Iterable<F<A>>
| F<[A, ...ReadonlyArray<A>]>
|
| productComposition | F<G<A>>
, F<G<B>>
| F<G<[A, B]>>
|
| productManyComposition | F<G<A>>
, Iterable<F<G<A>>>
| F<G<[A, ...ReadonlyArray<A>]>>
|
| nonEmptyTuple | [F<A>, F<B>, ...]
| F<[A, B, ...]>
|
| nonEmptyStruct | { a: F<A>, b: F<B>, ... }
| F<{ a: A, b: B, ... }>
|
| andThenBind | F<A>
, name: string
, F<B>
| F<A & { [name]: B }>
|
| productFlatten | F<A>
, F<B>
| F<[...A, B]>
|
Traversable
Traversal over a structure with an effect.
| Name | Given | To |
| ------------------- | ---------------------------------------- | ------------ |
| traverse | Applicative<F>
, T<A>
, A => F<B>
| F<T<B>>
|
| traverseComposition | Applicative<F>
, T<G<A>>
, A => F<B>
| F<T<G<B>>>
|
| sequence | Applicative<F>
, T<F<A>>
| F<T<A>>
|
| traverseTap | Applicative<F>
, T<A>
, A => F<B>
| F<T<A>>
|
TraversableFilterable
TraversableFilterable
, also known as Witherable
, represents list-like structures
that can essentially have a traverse
and a filter
applied as a single
combined operation (traverseFilter
).
| Name | Given | To |
| ------------------------ | ------------------------------------------------ | ----------------- |
| traversePartitionMap | Applicative<F>
, T<A>
, A => F<Either<B, C>>
| F<[T<B>, T<C>]>
|
| traverseFilterMap | Applicative<F>
, T<A>
, A => F<Option<B>>
| F<T<B>>
|
| traverseFilter | Applicative<F>
, T<A>
, A => F<boolean>
| F<T<A>>
|
| traversePartition | Applicative<F>
, T<A>
, A => F<boolean>
| F<[T<A>, T<A>]>
|
Adapted from: