@effect-app/schema-fork
v0.0.0-20240204124243
Published
Modeling the schema of data structures as first-class values
Downloads
67
Readme
Introduction
Welcome to the documentation for @effect/schema
, a library for defining and using schemas to validate and transform data in TypeScript.
@effect/schema
allows you to define a Schema<R, I, A>
that provides a blueprint for describing the structure and data types of your data. Once defined, you can leverage this schema to perform a range of operations, including:
| Operation | Description |
| --------------- | -------------------------------------------------------------------------------------------------------------- |
| Decoding | Transforming data from an input type I
to an output type A
. |
| Encoding | Converting data from an output type A
back to an input type I
. |
| Asserting | Verifying that a value adheres to the schema's output type A
. |
| Arbitraries | Generate arbitraries for fast-check testing. |
| Pretty printing | Support pretty printing for data structures. |
| JSON Schemas | Create JSON Schemas based on defined schemas. |
| Equivalence | Create Equivalences based on defined schemas. |
If you're eager to learn how to define your first schema, jump straight to the Basic usage section!
Understanding Decoding and Encoding
sequenceDiagram
participant U1 as unknown
participant I
participant A
participant U2 as unknown
U1->>A: decodeUnknown
I->>A: decode
A->>I: encode
U2->>I: encodeUnknown
U2->>A: validate
U2->>A: is
U2->>A: asserts
We'll break down these concepts using an example with a Schema<never, string, Date>
. This schema serves as a tool to transform a string
into a Date
and vice versa.
Encoding
When we talk about "encoding," we are referring to the process of changing a Date
into a string
. To put it simply, it's the act of converting data from one format to another.
Decoding
Conversely, "decoding" entails transforming a string
back into a Date
. It's essentially the reverse operation of encoding, where data is returned to its original form.
Decoding From Unknown
Decoding from unknown
involves two key steps:
Checking: Initially, we verify that the input data (which is of the
unknown
type) matches the expected structure. In our specific case, this means ensuring that the input is indeed astring
.Decoding: Following the successful check, we proceed to convert the
string
into aDate
. This process completes the decoding operation, where the data is both validated and transformed.
Encoding From Unknown
Encoding from unknown
involves two key steps:
Checking: Initially, we verify that the input data (which is of the
unknown
type) matches the expected structure. In our specific case, this means ensuring that the input is indeed aDate
.Encoding: Following the successful check, we proceed to convert the
Date
into astring
. This process completes the encoding operation, where the data is both validated and transformed.
[!NOTE] As a general rule, schemas should be defined such that encode + decode return the original value.
The Rule of Schemas: Keeping Encode and Decode in Sync
When working with schemas, there's an important rule to keep in mind: your schemas should be crafted in a way that when you perform both encoding and decoding operations, you should end up with the original value.
In simpler terms, if you encode a value and then immediately decode it, the result should match the original value you started with. This rule ensures that your data remains consistent and reliable throughout the encoding and decoding process.
Credits
This library was inspired by the following projects:
Requirements
- TypeScript 5.0 or newer
- The
strict
flag enabled in yourtsconfig.json
file - The
exactOptionalPropertyTypes
flag enabled in yourtsconfig.json
file{ // ... "compilerOptions": { // ... "strict": true, "exactOptionalPropertyTypes": true } }
- Additionally, make sure to install the following packages, as they are peer dependencies. Note that some package managers might not install peer dependencies by default, so you need to install them manually:
effect
package (peer dependency)- fast-check package (peer dependency)
Understanding exactOptionalPropertyTypes
The @effect/schema
library takes advantage of the exactOptionalPropertyTypes
option of tsconfig.json
. This option affects how optional properties are typed (to learn more about this option, you can refer to the official TypeScript documentation).
Let's delve into this with an example.
With exactOptionalPropertyTypes
Enabled
import * as S from "@effect/schema/Schema";
/*
const schema: S.Schema<never, {
readonly myfield?: string; // the type is strict
}, {
readonly myfield?: string; // the type is strict
}>
*/
const schema = S.struct({
myfield: S.optional(S.string.pipe(S.nonEmpty()), {
exact: true,
}),
});
S.decodeSync(schema)({ myfield: undefined });
/*
TypeScript Error:
Argument of type '{ myfield: undefined; }' is not assignable to parameter of type '{ readonly myfield?: string; }' with 'exactOptionalPropertyTypes: true'. Consider adding 'undefined' to the types of the target's properties.
Types of property 'myfield' are incompatible.
Type 'undefined' is not assignable to type 'string'.ts(2379)
*/
Here, notice that the type of myfield
is strict (string
), which means the type checker will catch any attempt to assign an invalid value (like undefined
).
With exactOptionalPropertyTypes
Disabled
If, for some reason, you can't enable the exactOptionalPropertyTypes
option (perhaps due to conflicts with other third-party libraries), you can still use @effect/schema
. However, there will be a mismatch between the types and the runtime behavior:
import * as S from "@effect/schema/Schema";
/*
const schema: S.Schema<never, {
readonly myfield?: string | undefined; // the type is widened to string | undefined
}, {
readonly myfield?: string | undefined; // the type is widened to string | undefined
}>
*/
const schema = S.struct({
myfield: S.optional(S.string.pipe(S.nonEmpty()), {
exact: true,
}),
});
S.decodeSync(schema)({ myfield: undefined }); // No type error, but a decoding failure occurs
/*
Error: { myfield?: a non empty string }
└─ ["myfield"]
└─ a non empty string
└─ From side refinement failure
└─ Expected a string, actual undefined
*/
In this case, the type of myfield
is widened to string | undefined
, which means the type checker won't catch the invalid value (undefined
). However, during decoding, you'll encounter an error, indicating that undefined
is not allowed.
Getting started
To install the alpha version:
npm install @effect/schema
Additionally, make sure to install the following packages, as they are peer dependencies. Note that some package managers might not install peer dependencies by default, so you need to install them manually:
effect
package (peer dependency)- fast-check package (peer dependency)
[!WARNING] This package is primarily published to receive early feedback and for contributors, during this development phase we cannot guarantee the stability of the APIs, consider each release to contain breaking changes.
Once you have installed the library, you can import the necessary types and functions from the @effect/schema/Schema
module.
import * as S from "@effect/schema/Schema";
Defining a schema
To define a Schema
, you can use the provided struct
function to define a new Schema
that describes an object with a fixed set of properties. Each property of the object is described by a Schema
, which specifies the data type and validation rules for that property.
For example, consider the following Schema
that describes a person object with a name
property of type string
and an age
property of type number
:
import * as S from "@effect/schema/Schema";
const Person = S.struct({
name: S.string,
age: S.number,
});
You can also use the union
function to define a Schema
that describes a value that can be one of a fixed set of types. For example, the following Schema
describes a value that can be either a string
or a number
:
const StringOrNumber = S.union(S.string, S.number);
In addition to the provided struct
and union
functions, @effect/schema/Schema
also provides a number of other functions for defining Schema
s, including functions for defining arrays, tuples, and records.
Extracting Inferred Types
After you've defined a Schema<R, I, A>
, you can extract the inferred type A
that represents the data described by the schema using the Schema.To
type.
For instance, with the Person
schema we defined earlier, you can extract the inferred type of a Person
object as demonstrated below:
import * as S from "@effect/schema/Schema";
const Person = S.struct({
name: S.string,
age: S.number,
});
interface Person extends S.Schema.To<typeof Person> {}
/*
Equivalent to:
interface Person {
readonly name: string;
readonly age: number;
}
*/
Alternatively you can also extract a type
instead of an interface
:
type Person = S.Schema.To<typeof Person>;
/*
Equivalent to:
type Person {
readonly name: string;
readonly age: number;
}
*/
You can also extract the inferred type R
that represents the context described by the schema using the Schema.Context
type:
// type Context = never
type Context = S.Schema.Context<typeof Person>;
Advanced extracting Inferred Types
In cases where I
differs from A
, you can also extract the inferred I
type using Schema.From
.
import type * as S from "@effect/schema/Schema";
// type To = number
type To = S.Schema.To<typeof S.NumberFromString>;
// type From = string
type From = S.Schema.From<typeof S.NumberFromString>;
To create a schema with an opaque type, you can use the following technique that re-declares the schema:
import * as S from "@effect/schema/Schema";
const _Person = S.struct({
name: S.string,
age: S.number,
});
interface Person extends S.Schema.To<typeof _Person> {}
// Re-declare the schema to create a schema with an opaque type
const Person: S.Schema<never, Person> = _Person;
Alternatively, you can use Schema.Class
(see the Class section below for more details).
Note that the technique shown above becomes more complex when the schema is defined such that A
is different from I
. For example:
import * as S from "@effect/schema/Schema";
/*
const _Person: S.Schema<never, {
readonly name: string;
readonly age: string;
}, {
readonly name: string;
readonly age: number;
}>
*/
const _Person = S.struct({
name: S.string,
age: S.NumberFromString,
});
interface Person extends S.Schema.To<typeof _Person> {}
interface PersonFrom extends S.Schema.From<typeof _Person> {}
// Re-declare the schema to create a schema with an opaque type
const Person: S.Schema<never, PersonFrom, Person> = _Person;
In this case, the field "age"
is of type string
in the From
type of the schema and is of type number
in the To
type of the schema. Therefore, we need to define two interfaces (PersonFrom
and Person
) and use both to redeclare our final schema Person
.
Decoding From Unknown
To decode a value from an unknown
value using the previously defined Schema
, you can make use of the decodeUnknown*
functions provided by the @effect/schema/Schema
module. Let's explore an example using the decodeUnknownEither
function:
import * as S from "@effect/schema/Schema";
import * as Either from "effect/Either";
const Person = S.struct({
name: S.string,
age: S.number,
});
const parse = S.decodeUnknownEither(Person);
const input: unknown = { name: "Alice", age: 30 };
const result1 = parse(input);
if (Either.isRight(result1)) {
console.log(result1.right);
/*
Output:
{ name: "Alice", age: 30 }
*/
}
const result2 = parse(null);
if (Either.isLeft(result2)) {
console.log(result2.left);
/*
Output:
{
_id: 'ParseError',
message: 'Expected { name: string; age: number }, actual null'
}
*/
}
The parse
function returns an Either<ParseError, A>
, where ParseError
is defined as follows:
interface ParseError {
readonly _tag: "ParseError";
readonly error: ParseIssue;
}
Here, ParseIssue
represents an error that might occur during the parsing process. It is wrapped in a tagged error to make it easier to catch errors using Effect.catchTag
. The result Either<ParseError, A>
contains the inferred data type described by the schema. A successful parse yields a Right
value with the parsed data A
, while a failed parse results in a Left
value containing a ParseError
.
Now, let's see another example using the decodeUnknownSync
function.
The decodeUnknownSync
function is used to parse a value and throw an error if the parsing fails. This is especially useful when you want to ensure that the parsed value adheres to the correct format and are ready to throw an error if it does not.
import * as S from "@effect/schema/Schema";
const Person = S.struct({
name: S.string,
age: S.number,
});
try {
const person = S.decodeUnknownSync(Person)({});
console.log(person);
} catch (e) {
console.error("Parsing failed:");
console.error(e);
}
/*
Parsing failed:
Error: { name: string; age: number }
└─ ["name"]
└─ is missing
...stack...
*/
In this example, we attempt to parse an empty object, but the name
property is missing, resulting in an error being thrown.
Handling Async Transformations
When your schema involves asynchronous transformations, neither the decodeUnknownSync
nor the decodeUnknownEither
functions will work for you. In such cases, you must turn to the decodeUnknown
function, which returns an Effect
.
import * as S from "@effect/schema/Schema";
import * as Effect from "effect/Effect";
const PersonId = S.number;
const Person = S.struct({
id: PersonId,
name: S.string,
age: S.number,
});
const asyncSchema = S.transformOrFail(
PersonId,
Person,
// Simulate an async transformation
(id) =>
Effect.succeed({ id, name: "name", age: 18 }).pipe(
Effect.delay("10 millis")
),
(person) => Effect.succeed(person.id).pipe(Effect.delay("10 millis"))
);
const syncParsePersonId = S.decodeUnknownEither(asyncSchema);
console.log(JSON.stringify(syncParsePersonId(1), null, 2));
/*
Output:
{
"_id": "Either",
"_tag": "Left",
"left": {
"_id": "ParseError",
"message": "is forbidden"
}
}
*/
const asyncParsePersonId = S.decodeUnknown(asyncSchema);
Effect.runPromise(asyncParsePersonId(1)).then(console.log);
/*
Output:
{ id: 1, name: 'name', age: 18 }
*/
As shown in the code above, the first approach returns a Forbidden
error, indicating that using decodeUnknownEither
with an async transformation is not allowed. However, the second approach works as expected, allowing you to handle async transformations and return the desired result.
Excess properties
When using a Schema
to parse a value, by default any properties that are not specified in the Schema
will be stripped out from the output. This is because the Schema
is expecting a specific shape for the parsed value, and any excess properties do not conform to that shape.
However, you can use the onExcessProperty
option (default value: "ignore"
) to trigger a parsing error. This can be particularly useful in cases where you need to detect and handle potential errors or unexpected values.
Here's an example of how you might use onExcessProperty
set to "error"
:
import * as S from "@effect/schema/Schema";
const Person = S.struct({
name: S.string,
age: S.number,
});
console.log(
S.decodeUnknownSync(Person)({
name: "Bob",
age: 40,
email: "[email protected]",
})
);
/*
Output:
{ name: 'Bob', age: 40 }
*/
S.decodeUnknownSync(Person)(
{
name: "Bob",
age: 40,
email: "[email protected]",
},
{ onExcessProperty: "error" }
);
/*
throws
Error: { name: string; age: number }
└─ ["email"]
└─ is unexpected, expected "name" | "age"
*/
If you want to allow excess properties to remain, you can use onExcessProperty
set to "preserve"
:
import * as S from "@effect/schema/Schema";
const Person = S.struct({
name: S.string,
age: S.number,
});
console.log(
S.decodeUnknownSync(Person)(
{
name: "Bob",
age: 40,
email: "[email protected]",
},
{ onExcessProperty: "preserve" }
)
);
/*
{ email: '[email protected]', name: 'Bob', age: 40 }
*/
All errors
The errors
option allows you to receive all parsing errors when attempting to parse a value using a schema. By default only the first error is returned, but by setting the errors
option to "all"
, you can receive all errors that occurred during the parsing process. This can be useful for debugging or for providing more comprehensive error messages to the user.
Here's an example of how you might use errors
:
import * as S from "@effect/schema/Schema";
const Person = S.struct({
name: S.string,
age: S.number,
});
S.decodeUnknownSync(Person)(
{
name: "Bob",
age: "abc",
email: "[email protected]",
},
{ errors: "all", onExcessProperty: "error" }
);
/*
throws
Error: { name: string; age: number }
├─ ["email"]
│ └─ is unexpected, expected "name" | "age"
└─ ["age"]
└─ Expected a number, actual "abc"
*/
Encoding
To use the Schema
defined above to encode a value to unknown
, you can use the encode
function:
import * as S from "@effect/schema/Schema";
import * as Either from "effect/Either";
// Age is a schema that can decode a string to a number and encode a number to a string
const Age = S.NumberFromString;
const Person = S.struct({
name: S.string,
age: Age,
});
const encoded = S.encodeEither(Person)({ name: "Alice", age: 30 });
if (Either.isRight(encoded)) {
console.log(encoded.right);
/*
Output:
{ name: "Alice", age: "30" }
*/
}
Note that during encoding, the number value 30
was converted to a string "30"
.
Formatting Errors
When you're working with Effect Schema and encounter errors during parsing, decoding, or encoding functions, you can format these errors in two different ways: using the TreeFormatter
or the ArrayFormatter
.
TreeFormatter (default)
The TreeFormatter
is the default way to format errors. It arranges errors in a tree structure, making it easy to see the hierarchy of issues.
Here's an example of how it works:
import * as S from "@effect/schema/Schema";
import { formatError } from "@effect/schema/TreeFormatter";
import * as Either from "effect/Either";
const Person = S.struct({
name: S.string,
age: S.number,
});
const result = S.decodeUnknownEither(Person)({});
if (Either.isLeft(result)) {
console.error("Parsing failed:");
console.error(formatError(result.left));
}
/*
Parsing failed:
{ name: string; age: number }
└─ ["name"]
└─ is missing
*/
ArrayFormatter
The ArrayFormatter
is an alternative way to format errors, presenting them as an array of issues. Each issue contains properties such as _tag
, path
, and message
:
export interface Issue {
readonly _tag:
| "Transform"
| "Type"
| "Forbidden"
| "Declaration"
| "Refinement"
| "Tuple"
| "TypeLiteral"
| "Missing"
| "Unexpected"
| "Union";
readonly path: ReadonlyArray<PropertyKey>;
readonly message: string;
}
Here's an example of how it works:
import { formatError } from "@effect/schema/ArrayFormatter";
import * as S from "@effect/schema/Schema";
import * as Either from "effect/Either";
const Person = S.struct({
name: S.string,
age: S.number,
});
const result = S.decodeUnknownEither(Person)(
{ name: 1, foo: 2 },
{ errors: "all", onExcessProperty: "error" }
);
if (Either.isLeft(result)) {
console.error("Parsing failed:");
console.error(formatError(result.left));
}
/*
Parsing failed:
[
{
_tag: 'Unexpected',
path: [ 'foo' ],
message: 'is unexpected, expected "name" | "age"'
},
{
_tag: 'Type',
path: [ 'name' ],
message: 'Expected a string, actual 1'
},
{ _tag: 'Missing', path: [ 'age' ], message: 'is missing' }
]
*/
Assertions
The is
function provided by the @effect/schema/Schema
module represents a way of verifying that a value conforms to a given Schema
. is
is a refinement that takes a value of type unknown
as an argument and returns a boolean
indicating whether or not the value conforms to the Schema
.
import * as S from "@effect/schema/Schema";
const Person = S.struct({
name: S.string,
age: S.number,
});
/*
const isPerson: (a: unknown, options?: ParseOptions | undefined) => a is {
readonly name: string;
readonly age: number;
}
*/
const isPerson = S.is(Person);
console.log(isPerson({ name: "Alice", age: 30 })); // true
console.log(isPerson(null)); // false
console.log(isPerson({})); // false
The asserts
function takes a Schema
and returns a function that takes an input value and checks if it matches the schema. If it does not match the schema, it throws an error with a comprehensive error message.
import * as S from "@effect/schema/Schema";
const Person = S.struct({
name: S.string,
age: S.number,
});
// const assertsPerson: (input: unknown, options?: ParseOptions) => asserts input is { readonly name: string; readonly age: number; }
const assertsPerson: S.Schema.ToAsserts<typeof Person> = S.asserts(Person);
try {
assertsPerson({ name: "Alice", age: "30" });
} catch (e) {
console.error("The input does not match the schema:");
console.error(e);
}
/*
The input does not match the schema:
Error: { name: string; age: number }
└─ ["age"]
└─ Expected a number, actual "30"
*/
// this will not throw an error
assertsPerson({ name: "Alice", age: 30 });
fast-check arbitraries
The arbitrary
function provided by the @effect/schema/Arbitrary
module represents a way of generating random values that conform to a given Schema
. This can be useful for testing purposes, as it allows you to generate random test data that is guaranteed to be valid according to the Schema
.
import * as Arbitrary from "@effect/schema/Arbitrary";
import * as S from "@effect/schema/Schema";
import * as fc from "fast-check";
const Person = S.struct({
name: S.string,
age: S.string.pipe(S.compose(S.NumberFromString), S.int()),
});
/*
fc.Arbitrary<{
readonly name: string;
readonly age: number;
}>
*/
const PersonArbitraryTo = Arbitrary.make(Person)(fc);
console.log(fc.sample(PersonArbitraryTo, 2));
/*
Output:
[ { name: 'iP=!', age: -6 }, { name: '', age: 14 } ]
*/
/*
Arbitrary for the "From" type:
fc.Arbitrary<{
readonly name: string;
readonly age: string;
}>
*/
const PersonArbitraryFrom = Arbitrary.make(S.from(Person))(fc);
console.log(fc.sample(PersonArbitraryFrom, 2));
/*
Output:
[ { name: '{F', age: '$"{|' }, { name: 'nB}@BK', age: '^V+|W!Z' } ]
*/
Troubleshooting: Dealing with "type": "module"
in package.json
If you have set the "type"
field in your package.json
to "module"
, you might encounter the following error:
import * as S from "@effect/schema/Schema";
import * as Arbitrary from "@effect/schema/Arbitrary";
import * as fc from "fast-check";
const arb = Arbitrary.make(S.string)(fc);
/*
...more lines...
Types have separate declarations of a private property 'internalRng'.
*/
To address this issue, you can apply a patch, for example using pnpm patch
, to the fast-check
package in the node_modules
directory:
diff --git a/CHANGELOG.md b/CHANGELOG.md
deleted file mode 100644
index 41d6274a9d4bb2d9924fb82f77e502f232fd12f5..0000000000000000000000000000000000000000
diff --git a/package.json b/package.json
index e871dfde5f8877b1b7de9bd3d9a6e3e4f7f59843..819035d70e22d246c615bda25183db9b5e124287 100644
--- a/package.json
+++ b/package.json
@@ -12,7 +12,7 @@
"default": "./lib/fast-check.js"
},
"import": {
- "types": "./lib/esm/types/fast-check.d.ts",
+ "types": "./lib/types/fast-check.d.ts",
"default": "./lib/esm/fast-check.js"
}
}
This patch helps resolve the issue caused by the declaration of a private property 'internalRng' having separate declarations in the types when using "type": "module"
in package.json
.
Pretty print
The to
function provided by the @effect/schema/Pretty
module represents a way of pretty-printing values that conform to a given Schema
.
You can use the to
function to create a human-readable string representation of a value that conforms to a Schema
. This can be useful for debugging or logging purposes, as it allows you to easily inspect the structure and data types of the value.
import * as Pretty from "@effect/schema/Pretty";
import * as S from "@effect/schema/Schema";
const Person = S.struct({
name: S.string,
age: S.number,
});
const PersonPretty = Pretty.make(Person);
// returns a string representation of the object
console.log(PersonPretty({ name: "Alice", age: 30 }));
/*
Output:
'{ "name": "Alice", "age": 30 }'
*/
Generating JSON Schemas
The to
/ from
functions, which are part of the @effect/schema/JSONSchema
module, allow you to generate a JSON Schema based on a schema definition:
import * as JSONSchema from "@effect/schema/JSONSchema";
import * as S from "@effect/schema/Schema";
const Person = S.struct({
name: S.string,
age: S.number,
});
const jsonSchema = JSONSchema.make(Person);
console.log(JSON.stringify(jsonSchema, null, 2));
/*
Output:
{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"required": [
"name",
"age"
],
"properties": {
"name": {
"type": "string",
"description": "a string",
"title": "string"
},
"age": {
"type": "number",
"description": "a number",
"title": "number"
}
},
"additionalProperties": false
}
*/
In this example, we have created a schema for a "Person" with a name (a string) and an age (a number). We then use the JSONSchema.to
function to generate the corresponding JSON Schema.
Identifier Annotations
You can enhance your schemas with identifier annotations. If you do, your schema will be included within a "definitions" object property on the root and referenced from there:
import * as JSONSchema from "@effect/schema/JSONSchema";
import * as S from "@effect/schema/Schema";
const Name = S.string.pipe(S.identifier("Name"));
const Age = S.number.pipe(S.identifier("Age"));
const Person = S.struct({
name: Name,
age: Age,
});
const jsonSchema = JSONSchema.make(Person);
console.log(JSON.stringify(jsonSchema, null, 2));
/*
Output:
{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"required": [
"name",
"age"
],
"properties": {
"name": {
"$ref": "#/$defs/Name"
},
"age": {
"$ref": "#/$defs/Age"
}
},
"additionalProperties": false,
"$defs": {
"Name": {
"type": "string",
"description": "a string",
"title": "string"
},
"Age": {
"type": "number",
"description": "a number",
"title": "number"
}
}
}
*/
This technique helps organize your JSON Schema by creating separate definitions for each identifier annotated schema, making it more readable and maintainable.
Recursive and Mutually Recursive Schemas
Recursive and mutually recursive schemas are supported, but in these cases, identifier annotations are required:
import * as JSONSchema from "@effect/schema/JSONSchema";
import * as S from "@effect/schema/Schema";
interface Category {
readonly name: string;
readonly categories: ReadonlyArray<Category>;
}
const schema: S.Schema<never, Category> = S.struct({
name: S.string,
categories: S.array(S.suspend(() => schema)),
}).pipe(S.identifier("Category"));
const jsonSchema = JSONSchema.make(schema);
console.log(JSON.stringify(jsonSchema, null, 2));
/*
Output:
{
"$schema": "http://json-schema.org/draft-07/schema#",
"$ref": "#/$defs/Category",
"$defs": {
"Category": {
"type": "object",
"required": [
"name",
"categories"
],
"properties": {
"name": {
"type": "string",
"description": "a string",
"title": "string"
},
"categories": {
"type": "array",
"items": {
"$ref": "#/$defs/Category"
}
}
},
"additionalProperties": false
}
}
}
*/
In the example above, we define a schema for a "Category" that can contain a "name" (a string) and an array of nested "categories." To support recursive definitions, we use the S.suspend
function and identifier annotations to name our schema.
This ensures that the JSON Schema properly handles the recursive structure and creates distinct definitions for each annotated schema, improving readability and maintainability.
JSON Schema Annotations
When defining a refinement (e.g., through the filter
function), you can attach a JSON Schema annotation to your schema containing a JSON Schema "fragment" related to this particular refinement. This fragment will be used to generate the corresponding JSON Schema. Note that if the schema consists of more than one refinement, the corresponding annotations will be merged.
import * as JSONSchema from "@effect/schema/JSONSchema";
import * as S from "@effect/schema/Schema";
// Simulate one or more refinements
const Positive = S.number.pipe(
S.filter((n) => n > 0, {
jsonSchema: { minimum: 0 },
})
);
const schema = Positive.pipe(
S.filter((n) => n <= 10, {
jsonSchema: { maximum: 10 },
})
);
console.log(JSONSchema.make(schema));
/*
Output:
{
'$schema': 'http://json-schema.org/draft-07/schema#',
type: 'number',
description: 'a number',
title: 'number',
minimum: 0,
maximum: 10
}
*/
As seen in the example, the JSON Schema annotations are merged with the base JSON Schema from S.number
. This approach helps handle multiple refinements while maintaining clarity in your code.
Generating Equivalences
The to
function, which is part of the @effect/schema/Equivalence
module, allows you to generate an Equivalence based on a schema definition:
import * as S from "@effect/schema/Schema";
import * as Equivalence from "@effect/schema/Equivalence";
const Person = S.struct({
name: S.string,
age: S.number,
});
// $ExpectType Equivalence<{ readonly name: string; readonly age: number; }>
const PersonEquivalence = Equivalence.make(Person);
const john = { name: "John", age: 23 };
const alice = { name: "Alice", age: 30 };
console.log(PersonEquivalence(john, { name: "John", age: 23 })); // Output: true
console.log(PersonEquivalence(john, alice)); // Output: false
Basic usage
Cheatsheet
| Typescript Type | Description / Notes | Schema / Combinator |
| -------------------------------------------- | ---------------------------------------- | --------------------------------------------------------- |
| null
| | S.null
|
| undefined
| | S.undefined
|
| string
| | S.string
|
| number
| | S.number
|
| boolean
| | S.boolean
|
| symbol
| | S.symbolFromSelf
/ S.symbol
|
| bigint
| | S.bigintFromSelf
/ S.bigint
|
| unknown
| | S.unknown
|
| any
| | S.any
|
| never
| | S.never
|
| object
| | S.object
|
| unique symbol
| | S.uniqueSymbol
|
| "a"
, 1
, true
| type literals | S.literal("a")
, S.literal(1)
, S.literal(true)
|
| a${string}
| template literals | S.templateLiteral(S.literal("a"), S.string)
|
| { readonly a: string, readonly b: number }
| structs | S.struct({ a: S.string, b: S.number })
|
| { readonly a?: string }
| optional fields | S.struct({ a: S.optional(S.string, { exact: true }) })
|
| Record<A, B>
| records | S.record(A, B)
|
| readonly [string, number]
| tuples | S.tuple(S.string, S.number)
|
| ReadonlyArray<string>
| arrays | S.array(S.string)
|
| A \| B
| unions | S.union(A, B)
|
| A & B
| intersections of non-overlapping structs | S.extend(A, B)
|
| Record<A, B> & Record<C, D>
| intersections of non-overlapping records | S.extend(S.record(A, B), S.record(C, D))
|
| type A = { readonly a: A \| null }
| recursive types | S.struct({ a: S.union(S.null, S.suspend(() => self)) })
|
| keyof A
| | S.keyof(A)
|
| Partial<A>
| | S.partial(A)
|
| Required<A>
| | S.required(A)
|
Primitives
import * as S from "@effect/schema/Schema";
// primitive values
S.string;
S.number;
S.bigint; // Schema<never, string, bigint>
S.boolean;
S.symbol; // Schema<never, string, symbol>
S.object;
// empty types
S.undefined;
S.void; // accepts undefined
// catch-all types
// allows any value
S.any;
S.unknown;
// never type
// allows no values
S.never;
S.UUID;
S.ULID;
Literals
import * as S from "@effect/schema/Schema";
S.null; // same as S.literal(null)
S.literal("a");
S.literal("a", "b", "c"); // union of literals
S.literal(1);
S.literal(2n); // bigint literal
S.literal(true);
Template literals
The templateLiteral
combinator allows you to create a schema for a TypeScript template literal type.
import * as S from "@effect/schema/Schema";
// $ExpectType Schema<never, `a${string}`>
S.templateLiteral(S.literal("a"), S.string);
// example from https://www.typescriptlang.org/docs/handbook/2/template-literal-types.html
const EmailLocaleIDs = S.literal("welcome_email", "email_heading");
const FooterLocaleIDs = S.literal("footer_title", "footer_sendoff");
// $ExpectType Schema<never, "welcome_email_id" | "email_heading_id" | "footer_title_id" | "footer_sendoff_id">
S.templateLiteral(S.union(EmailLocaleIDs, FooterLocaleIDs), S.literal("_id"));
Filters
In the @effect/schema/Schema
library, you can apply custom validation logic using filters.
You can define a custom validation check on any schema using the filter
function. Here's a simple example:
import * as S from "@effect/schema/Schema";
const LongString = S.string.pipe(
S.filter((s) => s.length >= 10, {
message: () => "a string at least 10 characters long",
})
);
console.log(S.decodeUnknownSync(LongString)("a"));
/*
throws:
Error: a string at least 10 characters long
...stack...
*/
It's recommended to include as much metadata as possible for later introspection of the schema, such as an identifier, JSON schema representation, and a description:
import * as S from "@effect/schema/Schema";
const LongString = S.string.pipe(
S.filter((s) => s.length >= 10, {
message: () => "a string at least 10 characters long",
identifier: "LongString",
jsonSchema: { minLength: 10 },
description:
"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua",
})
);
For more complex scenarios, you can return an Option<ParseError>
type instead of a boolean. In this context, None
indicates success, and Some(error)
rejects the input with a specific error. Here's an example:
import * as ParseResult from "@effect/schema/ParseResult";
import * as S from "@effect/schema/Schema";
import * as Option from "effect/Option";
const schema = S.struct({ a: S.string, b: S.string }).pipe(
S.filter((o) =>
o.b === o.a
? Option.none()
: Option.some(
ParseResult.type(
S.literal(o.a).ast,
o.b,
`b ("${o.b}") should be equal to a ("${o.a}")`
)
)
)
);
console.log(S.decodeUnknownSync(schema)({ a: "foo", b: "bar" }));
/*
throws:
Error: <refinement schema>
└─ Predicate refinement failure
└─ b ("bar") should be equal to a ("foo")
*/
[!WARNING] Please note that the use of filters do not alter the type of the
Schema
. They only serve to add additional constraints to the parsing process.
String filters
import * as S from "@effect/schema/Schema";
S.string.pipe(S.maxLength(5));
S.string.pipe(S.minLength(5));
S.NonEmpty; // same as S.string.pipe(S.maxLength(1))
S.string.pipe(S.length(5));
S.string.pipe(S.pattern(regex));
S.string.pipe(S.startsWith(string));
S.string.pipe(S.endsWith(string));
S.string.pipe(S.includes(searchString));
S.string.pipe(S.trimmed()); // verifies that a string contains no leading or trailing whitespaces
S.string.pipe(S.lowercased()); // verifies that a string is lowercased
Note: The trimmed
combinator does not make any transformations, it only validates. If what you were looking for was a combinator to trim strings, then check out the trim
combinator ot the Trim
schema.
Number filters
import * as S from "@effect/schema/Schema";
S.number.pipe(S.greaterThan(5));
S.number.pipe(S.greaterThanOrEqualTo(5));
S.number.pipe(S.lessThan(5));
S.number.pipe(S.lessThanOrEqualTo(5));
S.number.pipe(S.between(-2, 2)); // -2 <= x <= 2
S.number.pipe(S.int()); // value must be an integer
S.number.pipe(S.nonNaN()); // not NaN
S.number.pipe(S.finite()); // ensures that the value being parsed is finite and not equal to Infinity or -Infinity
S.number.pipe(S.positive()); // > 0
S.number.pipe(S.nonNegative()); // >= 0
S.number.pipe(S.negative()); // < 0
S.number.pipe(S.nonPositive()); // <= 0
S.number.pipe(S.multipleOf(5)); // evenly divisible by 5
Bigint filters
import * as S from "@effect/schema/Schema";
S.bigint.pipe(S.greaterThanBigint(5n));
S.bigint.pipe(S.greaterThanOrEqualToBigint(5n));
S.bigint.pipe(S.lessThanBigint(5n));
S.bigint.pipe(S.lessThanOrEqualToBigint(5n));
S.bigint.pipe(S.betweenBigint(-2n, 2n)); // -2n <= x <= 2n
S.bigint.pipe(S.positiveBigint()); // > 0n
S.bigint.pipe(S.nonNegativeBigint()); // >= 0n
S.bigint.pipe(S.negativeBigint()); // < 0n
S.bigint.pipe(S.nonPositiveBigint()); // <= 0n
BigDecimal filters
import * as S from "@effect/schema/Schema";
import * as BigDecimal from "effect/BigDecimal";
S.BigDecimal.pipe(S.greaterThanBigDecimal(BigDecimal.fromNumber(5)));
S.BigDecimal.pipe(S.greaterThanOrEqualToBigDecimal(BigDecimal.fromNumber(5)));
S.BigDecimal.pipe(S.lessThanBigDecimal(BigDecimal.fromNumber(5)));
S.BigDecimal.pipe(S.lessThanOrEqualToBigDecimal(BigDecimal.fromNumber(5)));
S.BigDecimal.pipe(
S.betweenBigDecimal(BigDecimal.fromNumber(-2), BigDecimal.fromNumber(2))
);
S.BigDecimal.pipe(S.positiveBigDecimal());
S.BigDecimal.pipe(S.nonNegativeBigDecimal());
S.BigDecimal.pipe(S.negativeBigDecimal());
S.BigDecimal.pipe(S.nonPositiveBigDecimal());
Duration filters
import * as S from "@effect/schema/Schema";
S.Duration.pipe(S.greaterThanDuration("5 seconds"));
S.Duration.pipe(S.greaterThanOrEqualToDuration("5 seconds"));
S.Duration.pipe(S.lessThanDuration("5 seconds"));
S.Duration.pipe(S.lessThanOrEqualToDuration("5 seconds"));
S.Duration.pipe(S.betweenDuration("5 seconds", "10 seconds"));
Array filters
import * as S from "@effect/schema/Schema";
S.array(S.number).pipe(S.maxItems(2)); // max array length
S.array(S.number).pipe(S.minItems(2)); // min array length
S.array(S.number).pipe(S.itemsCount(2)); // exact array length
Branded types
TypeScript's type system is structural, which means that any two types that are structurally equivalent are considered the same. This can cause issues when types that are semantically different are treated as if they were the same.
type UserId = string
type Username = string
const getUser = (id: UserId) => { ... }
const myUsername: Username = "gcanti"
getUser(myUsername) // works fine
In the above example, UserId
and Username
are both aliases for the same type, string
. This means that the getUser
function can mistakenly accept a Username
as a valid UserId
, causing bugs and errors.
To avoid these kinds of issues, the @effect
ecosystem provides a way to create custom types with a unique identifier attached to them. These are known as "branded types".
import type * as B from "effect/Brand"
type UserId = string & B.Brand<"UserId">
type Username = string
const getUser = (id: UserId) => { ... }
const myUsername: Username = "gcanti"
getUser(myUsername) // error
By defining UserId
as a branded type, the getUser
function can accept only values of type UserId
, and not plain strings or other types that are compatible with strings. This helps to prevent bugs caused by accidentally passing the wrong type of value to the function.
There are two ways to define a schema for a branded type, depending on whether you:
- want to define the schema from scratch
- have already defined a branded type via
effect/Brand
and want to reuse it to define a schema
Defining a schema from scratch
To define a schema for a branded type from scratch, you can use the brand
combinator exported by the @effect/schema/Schema
module. Here's an example:
import * as S from "@effect/schema/Schema";
const UserId = S.string.pipe(S.brand("UserId"));
type UserId = S.Schema.To<typeof UserId>; // string & Brand<"UserId">
Note that you can use unique symbol
s as brands to ensure uniqueness across modules / packages:
import * as S from "@effect/schema/Schema";
const UserIdBrand = Symbol.for("UserId");
const UserId = S.string.pipe(S.brand(UserIdBrand));
type UserId = S.Schema.To<typeof UserId>; // string & Brand<typeof UserIdBrand>
Reusing an existing branded type
If you have already defined a branded type using the effect/Brand
module, you can reuse it to define a schema using the fromBrand
combinator exported by the @effect/schema/Schema
module. Here's an example:
import * as B from "effect/Brand";
// the existing branded type
type UserId = string & B.Brand<"UserId">;
const UserId = B.nominal<UserId>();
import * as S from "@effect/schema/Schema";
// Define a schema for the branded type
const UserIdSchema = S.string.pipe(S.fromBrand(UserId));
Native enums
import * as S from "@effect/schema/Schema";
enum Fruits {
Apple,
Banana,
}
// $ExpectType Schema<never, Fruits>
S.enums(Fruits);
Nullables
import * as S from "@effect/schema/Schema";
// $ExpectType Schema<never, string | null>
S.nullable(S.string);
// $ExpectType Schema<never, string | null | undefined>
S.nullish(S.string);
Unions
@effect/schema/Schema
includes a built-in union
combinator for composing "OR" types.
import * as S from "@effect/schema/Schema";
// $ExpectType Schema<never, string | number>
S.union(S.string, S.number);
Union of literals
While the following is perfectly acceptable:
import * as S from "@effect/schema/Schema";
// $ExpectType Schema<never, "a" | "b" | "c">
const schema = S.union(S.literal("a"), S.literal("b"), S.literal("c"));
It is possible to use literal
and pass multiple literals, which is less cumbersome:
import * as S from "@effect/schema/Schema";
// $ExpectType Schema<never, "a" | "b" | "c">
const schema = S.literal("a", "b", "c");
Under the hood, they are the same, as literal(...literals)
will be converted into a union.
Discriminated unions
TypeScript reference: https://www.typescriptlang.org/docs/handbook/2/narrowing.html#discriminated-unions
Discriminated unions in TypeScript are a way of modeling complex data structures that may take on different forms based on a specific set of conditions or properties. They allow you to define a type that represents multiple related shapes, where each shape is uniquely identified by a shared discriminant property.
In a discriminated union, each variant of the union has a common property, called the discriminant. The discriminant is a literal type, which means it can only have a finite set of possible values. Based on the value of the discriminant property, TypeScript can infer which variant of the union is currently in use.
Here is an example of a discriminated union in TypeScript:
type Circle = {
readonly kind: "circle";
readonly radius: number;
};
type Square = {
readonly kind: "square";
readonly sideLength: number;
};
type Shape = Circle | Square;
This code defines a discriminated union using the @effect/schema
library:
import * as S from "@effect/schema/Schema";
const Circle = S.struct({
kind: S.literal("circle"),
radius: S.number,
});
const Square = S.struct({
kind: S.literal("square"),
sideLength: S.number,
});
const Shape = S.union(Circle, Square);
The literal
combinator is used to define the discriminant property with a specific string literal value.
Two structs are defined for Circle
and Square
, each with their own properties. These structs represent the variants of the union.
Finally, the union
combinator is used to create a schema for the discriminated union Shape
, which is a union of Circle
and Square
.
How to transform a simple union into a discriminated union
If you're working on a TypeScript project and you've defined a simple union to represent a particular input, you may find yourself in a situation where you're not entirely happy with how it's set up. For example, let's say you've defined a Shape
union as a combination of Circle
and Square
without any special property:
import * as S from "@effect/schema/Schema";
const Circle = S.struct({
radius: S.number,
});
const Square = S.struct({
sideLength: S.number,
});
const Shape = S.union(Circle, Square);
To make your code more manageable, you may want to transform the simple union into a discriminated union. This way, TypeScript will be able to automatically determine which member of the union you're working with based on the value of a specific property.
To achieve this, you can add a special property to each member of the union, which will allow TypeScript to know which type it's dealing with at runtime. Here's how you can transform the Shape
schema into another schema that represents a discriminated union:
import * as S from "@effect/schema/Schema";
import * as assert from "node:assert";
const Circle = S.struct({
radius: S.number,
});
const Square = S.struct({
sideLength: S.number,
});
const DiscriminatedShape = S.union(
Circle.pipe(
S.transform(
Circle.pipe(S.extend(S.struct({ kind: S.literal("circle") }))), // Add a "kind" property with the literal value "circle" to Circle
(circle) => ({ ...circle, kind: "circle" as const }), // Add the discriminant property to Circle
({ kind: _kind, ...rest }) => rest // Remove the discriminant property
)
),
Square.pipe(
S.transform(
Square.pipe(S.extend(S.struct({ kind: S.literal("square") }))), // Add a "kind" property with the literal value "square" to Square
(square) => ({ ...square, kind: "square" as const }), // Add the discriminant property to Square
({ kind: _kind, ...rest }) => rest // Remove the discriminant property
)
)
);
assert.deepStrictEqual(
S.decodeUnknownSync(DiscriminatedShape)({ radius: 10 }),
{
kind: "circle",
radius: 10,
}
);
assert.deepStrictEqual(
S.decodeUnknownSync(DiscriminatedShape)({ sideLength: 10 }),
{
kind: "square",
sideLength: 10,
}
);
In this example, we use the extend
function to add a "kind" property with a literal value to each member of the union. Then we use transform
to add the discriminant property and remove it afterwards. Finally, we use union
to combine the transformed schemas into a discriminated union.
However, when we use the schema to encode a value, we want the output to match the original input shape. Therefore, we must remove the discriminant property we added earlier from the encoded value to match the original shape of the input.
The previous solution works perfectly and shows how we can add and remove properties to our schema at will, making it easier to consume the result within our domain model. However, it requires a lot of boilerplate. Fortunately, there is an API called attachPropertySignature
designed specifically for this use case, which allows us to achieve the same result with much less effort:
import * as S from "@effect/schema/Schema";
import * as assert from "node:assert";
const Circle = S.struct({ radius: S.number });
const Square = S.struct({ sideLength: S.number });
const DiscriminatedShape = S.union(
Circle.pipe(S.attachPropertySignature("kind", "circle")),
Square.pipe(S.attachPropertySignature("kind", "square"))
);
// decoding
assert.deepStrictEqual(
S.decodeUnknownSync(DiscriminatedShape)({ radius: 10 }),
{
kind: "circle",
radius: 10,
}
);
// encoding
assert.deepStrictEqual(
S.encodeSync(DiscriminatedShape)({
kind: "circle",
radius: 10,
}),
{ radius: 10 }
);
Tuples
import * as S from "@effect/schema/Schema";
// $ExpectType Schema<never, readonly [string, number]>
S.tuple(S.string, S.number);
Append a required element
import * as S from "@effect/schema/Schema";
// $ExpectType Schema<never, readonly [string, number, boolean]>
S.tuple(S.string, S.number).pipe(S.element(S.boolean));
Append an optional element
import * as S from "@effect/schema/Schema";
// $ExpectType Schema<never, readonly [string, number, boolean?]>
S.tuple(S.string, S.number).pipe(S.optionalElement(S.boolean));
Append a rest element
import * as S from "@effect/schema/Schema";
// $ExpectType Schema<never, readonly [string, number, ...boolean[]]>
S.tuple(S.string, S.number).pipe(S.rest(S.boolean));
Arrays
import * as S from "@effect/schema/Schema";
// $ExpectType Schema<never, readonly number[]>
S.array(S.number);
Mutable Arrays
By default, when you use S.array
, it generates a type marked as readonly. The mutable
combinator is a useful function for creating a new schema with a mutable type in a shallow manner:
import * as S from "@effect/schema/Schema";
// $ExpectType Schema<never, number[]>
S.mutable(S.array(S.number));
Non empty arrays
import * as S from "@effect/schema/Schema";
// $ExpectType Schema<never, readonly [number, ...number[]]>
S.nonEmptyArray(S.number);
Structs
import * as S from "@effect/schema/Schema";
// $ExpectType Schema<never, { readonly a: string; readonly b: number; }>
S.struct({ a: S.string, b: S.number });
Mutable Properties
By default, when you use S.struct
, it generates a type with properties that are marked as readonly. The mutable
combinator is a useful function for creating a new schema with properties made mutable in a shallow manner:
import * as S from "@effect/schema/Schema";
// $ExpectType Schema<never, { a: string; b: number; }>
S.mutable(S.struct({ a: S.string, b: S.number }));
Optional fields
Cheatsheet
| Combinator | From | To |
| ---------- | ------------------------------------ | ------------------------------------------------------------------ |
| optional
| Schema<R, I, A>
| PropertySignature<R, I \| undefined, true, A \| undefined, true>
|
| optional
| Schema<R, I, A>
, { exact: true }
| PropertySignature<R, I, true, A, true>
|
optional(schema)
- decoding
<missing value>
-><missing value>
undefined
->undefined
i
->a
- encoding
<missing value>
-><missing value>
undefined
->undefined
a
->i
optional(schema, { exact: true })
- decoding
<missing value>
-><missing value>
i
->a
- encoding
<missing value>
-><missing value>
a
->i
Default values
| Combinator | From | To |
| ---------- | ---------------------------------------------------------------------- | -------------------------------------------------------------- |
| optional
| Schema<R, I, A>
, { default: () => A }
| PropertySignature<R, I \| undefined, true, A, false>
|
| optional
| Schema<R, I, A>
, { exact: true, default: () => A }
| PropertySignature<R, I, true, A, false>
|
| optional
| Schema<R, I, A>
, { nullable: true, default: () => A }
| PropertySignature<R, I \| null \| undefined, true, A, false>
|
| optional
| Schema<R, I, A>
, { exact: true, nullable: true, default: () => A }
| PropertySignature<R, I \| null, true, A, false>
|
optional(schema, { default: () => A })
- decoding
<missing value>
-><default value>
undefined
-><default value>
i
->a
- encoding
a
->i
optional(schema, { exact: true, default: () => A })
- decoding
<missing value>
-><default value>
i
->a
- encoding
a
->i
optional(schema, { nullable: true, default: () => A })
- decoding
<missing value>
-><default value>
undefined
-><default value>
null
-><default value>
i
->a
- encoding
a
->i
optional(schema, { exact: true, nullable: true, default: () => A })
- decoding
<missing value>
-><default value>
null
-><default value>
i
->a
- encoding
a
->i
Optional fields as Option
s
| Combinator | From | To |
| ---------- | ------------------------------------------------------------------ | ---------------------------------------------------------------------- |
| optional
| Schema<R, I, A>
, { as: "Option" }
| PropertySignature<R, I \| undefined, true, Option<A>, false>
|
| optional
| Schema<R, I, A>
, { exact: true, as: "Option" }
| PropertySignature<R, I, true, Option<A>, false>
|
| optional
| Schema<R, I, A>
, { nullable: true, as: "Option" }
| PropertySignature<R, I \| undefined \| null, true, Option<A>, false>
|
| optional
| Schema<R, I, A>
, { exact: true, nullable: true, as: "Option" }
| PropertySignature<R, I \| null, true, Option<A>, false>
|
optional(schema, { as: "Option" })
- decoding
<missing value>
->Option.none()
undefined
->Option.none()
i
->Option.some(a)
- encoding
Option.none()
-><missing value>
Option.some(a)
->i
optional(schema, { exact: true, as: "Option" })
- decoding
<missing value>
->Option.none()
i
->Option.some(a)
- encoding
Option.none()
-><missing value>
Option.some(a)
->i
optional(schema, { nullable: true, as: "Option" })
- decoding
<missing value>
->Option.none()
undefined
->Option.none()
null
->Option.none()
i
->Option.some(a)
- encoding
Option.none()
-><missing value>
Option.some(a)
->i
optional(schema, { exact: true, nullable: true, as: "Option" })
- decoding
<missing value>
->Option.none()
null
->Option.none()
i
->Option.some(a)
- encoding
Option.none()
-><missing value>
Option.some(a)
->i
Renaming Properties
To rename one or more properties, you can utilize the rename
API:
import * as S from "@effect/schema/Schema";
// Original Schema
const originalSchema = S.struct({ a: S.string, b: S.number });
// Renaming the "a" property to "c"
const renamedSchema = S.rename(originalSchema, { a: "c" });
console.log(S.decodeUnknownSync(renamedSchema)({ a: "a", b: 1 }));
// Output: { c: "a", b: 1 }
In the example above, we have an original schema with properties "a" and "b." Using the rename
API, we create a new schema where we rename the "a" property to "c." The resulting schema, when used with S.decodeUnknownSync
, transforms the input object by renaming the specified property.
Classes
When working with schemas, you have a choice beyond the S.struct
constructor. You can leverage the power of classes through the Class
utility, which comes with its own set of advantages tailored to common use cases.
The Benefits of Using Classes
Classes offer several features that simplify the schema creation process:
- All-in-One Definition: With classes, you can define both a schema and an opaque type simultaneously.
- Shared Functionality: You can incorporate shared functionality using class methods or getters.
- Value Equality and Hashing: Utilize the built-in capability for checking value equality and applying hashing (thanks to
Class
implementingData.Case
).
Let's dive into an illustrative example to better understand how classes work:
import * as S from "@effect/schema/Schema";
// Define your schema by providing the type to `Class` and the desired fields
class Person extends S.Class<Person>()({
id: S.number,
name: S.string.pipe(S.nonEmpty()),
}) {}
Validation and Instantiation
The class constructor serves as a validation and instantiation tool. It ensures that the provided properties meet the schema requirements:
const tim = new Person({ id: 1, name: "Tim" });
Keep in mind that it throws an error for invalid properties:
new Person({ id: 1, name: "" });
/* throws
Error: { id: number; name: a non empty string }
└─ ["name"]
└─ a non empty string
└─ Predicate refinement failure
└─ Expected a non empty string, actual ""
*/
Custom Getters and Methods
For more flexibility, you can also introduce custom getters and methods:
import * as S from "@effect/schema/Schema";
class Person extends S.Class<Person>()({
id: S.number,
name: S.string.pipe(S.nonEmpty()),
}) {
get upperName() {
return this.name.toUpperCase();
}
}
const john = new Person({ id: 1, name: "John" });
console.log(john.upperName); // "JOHN"
Accessing Related Schemas
The class constructor itself is a Schema, and can be assigned/provided anywhere a Schema is expected. There is also a .struct
property, which can be used when the class prototype is not required.
import * as S from "@effect/schema/Schema";
class Person extends S.Class<Person>()({
id: S.number,
name: S.string.pipe(S.nonEmpty()),
}) {}
console.log(S.isSchema(Person)); // true
// $ExpectType Schema<never, { readonly id: number; name: string; }, { readonly id: number; name: string; }>
Person.struct;
Tagged Class variants
You can also create classes that extend TaggedClass
& TaggedError
from the effect/Data
module:
import * as S from "@effect/schema/Schema";
class TaggedPerson extends S.TaggedClass<TaggedPerson>()("TaggedPerson", {
name: S.string,
}) {}
class HttpError extends S.TaggedError<HttpError>()("HttpError", {
status: S.number,
}) {}
const joe = new TaggedPerson({ name: "Joe" });
console.log(joe._tag); // "TaggedPerson"
const error = new HttpError({ status: 404 });
console.log(error._tag); // "HttpError"
console.log(error.stack); // access the stack trace
Extending existing Classes
In situations where you need to augment your existing class with more fields, the built-in extend
utility comes in handy:
import * as S from "@effect/schema/Schema";
class Person extends S.Class<Person>()({
id: S.number,
name: S.string.pipe(S.nonEmpty()),
}) {
get upperName() {
return this.name.toUpperCase();
}
}
class PersonWithAge extends Person.extend<PersonWithAge>()({
age: S.number,
}) {
get isAdult() {
return this.age >= 18;
}
}
Transforms
You have the option to enhance a class with (effectful) transforms. This becomes valuable when you want to enrich or validate an entity sourced from a data store.
import * as ParseResult from "@effect/schema/ParseResult";
import * as S from "@effect/schema/Schema";
import * as Effect from "effect/Effect";
import * as Option from "effect/Option";
export class Person extends S.Class<Person>()({
id: S.number,
name: S.string,
}) {}
console.log(S.decodeUnknownSync(Person)({ id: 1, name: "name" }));
/*
Output:
Person { id: 1, name: 'name' }
*/
function getAge(id: number): Effect.Effect<never, Error, number> {
return Effect.succeed(id + 2);
}
export class PersonWithTransform extends Person.transformOrFail<PersonWithTransform>()(
{
age: S.optional(S.number, { exact: true, as: "Option" }),
},
(input) =>
Effect.mapBoth(getAge(input.id), {
onFailure: (e) => ParseResult.type(S.string.ast, input.id, e.message),
// must return { age: Option<number> }
onSuccess: (age) => ({ ...input, age: Option.some(age) }),
}),
ParseResult.succeed
) {}
S.decodeUnknownPromise(PersonWithTransform)({ id: 1, name: "name" }).then(
console.log
);
/*
Output:
PersonWithTransform {
id: 1,
name: 'name',
age: { _id: 'Option', _tag: 'Some', value: 3 }
}
*/
export class PersonWithTransformFrom extends Person.transformOrFailFrom<PersonWithTransformFrom>()(
{
age: S.optional(S.number, { exact: true, as: "Option" }),
},
(input) =>
Effect.mapBoth(getAge(input.id), {
onFailure: (e) => ParseResult.type(S.string.ast, input, e.message),
// must return { age?: number }
onSuccess: (age) => (age > 18 ? { ...input, age } : { ...input }),
}),
ParseResult.succeed
) {}
S.decodeUnknownPromise(PersonWithTransformFrom)({ id: 1, name: "name" }).then(
console.log
);
/*
Output:
PersonWithTransformFrom {
id: 1,
name: 'name',
age: