@devolutions/devolutions-crypto
v0.9.1
Published
An abstraction layer for the cryptography used by Devolutions
Downloads
2
Keywords
Readme
devolutions-crypto
Cryptographic library used in Devolutions products. It is made to be fast, easy to use and misuse-resistant.
Documentation
Usage
- Overview
- Ciphertext Module
- Key Module
- PasswordHash Module
- SecretSharing Module
- Signature Module
- Utils Module
Overview
The library is splitted into multiple modules, which are explained below. When
dealing with "managed" data, that includes an header and versionning, you deal
with structures like Ciphertext
, PublicKey
, etc.
These all implements TryFrom<&[u8]>
and Into<Vec<u8>>
which are the implemented way to serialize and deserialize data.
use std::convert::TryFrom as _;
use devolutions_crypto::utils::generate_key;
use devolutions_crypto::ciphertext::{ encrypt, CiphertextVersion, Ciphertext };
let key: Vec<u8> = generate_key(32);
let data = b"somesecretdata";
let encrypted_data: Ciphertext = encrypt(data, &key, CiphertextVersion::Latest).expect("encryption shouldn't fail");
// The ciphertext can be serialized.
let encrypted_data_vec: Vec<u8> = encrypted_data.into();
// This data can be saved somewhere, passed to another language or over the network
// ...
// When you receive the data as a byte array, you can deserialize it into a struct using TryFrom
let ciphertext = Ciphertext::try_from(encrypted_data_vec.as_slice()).expect("deserialization shouldn't fail");
let decrypted_data = ciphertext.decrypt(&key).expect("The decryption shouldn't fail");
assert_eq!(decrypted_data, data);
Ciphertext
This module contains everything related to encryption. You can use it to encrypt and decrypt data using either a shared key of a keypair.
Either way, the encryption will give you a Ciphertext
, which has a method to decrypt it.
Symmetric
use devolutions_crypto::utils::generate_key;
use devolutions_crypto::ciphertext::{ encrypt, CiphertextVersion, Ciphertext };
let key: Vec<u8> = generate_key(32);
let data = b"somesecretdata";
let encrypted_data: Ciphertext = encrypt(data, &key, CiphertextVersion::Latest).expect("encryption shouldn't fail");
let decrypted_data = encrypted_data.decrypt(&key).expect("The decryption shouldn't fail");
assert_eq!(decrypted_data, data);
Asymmetric
Here, you will need a PublicKey
to encrypt data and the corresponding
PrivateKey
to decrypt it. You can generate them by using generate_keypair
in the Key module.
use devolutions_crypto::key::{generate_keypair, KeyVersion, KeyPair};
use devolutions_crypto::ciphertext::{ encrypt_asymmetric, CiphertextVersion, Ciphertext };
let keypair: KeyPair = generate_keypair(KeyVersion::Latest);
let data = b"somesecretdata";
let encrypted_data: Ciphertext = encrypt_asymmetric(data, &keypair.public_key, CiphertextVersion::Latest).expect("encryption shouldn't fail");
let decrypted_data = encrypted_data.decrypt_asymmetric(&keypair.private_key).expect("The decryption shouldn't fail");
assert_eq!(decrypted_data, data);
Key
For now, this module only deal with keypairs, as the symmetric keys are not wrapped yet.
Generation/Derivation
Using generate_keypair
will generate a random keypair.
Asymmetric keys have two uses. They can be used to encrypt and decrypt data and to perform a key exchange.
generate_keypair
use devolutions_crypto::key::{generate_keypair, KeyVersion, KeyPair};
let keypair: KeyPair = generate_keypair(KeyVersion::Latest);
Key Exchange
The goal of using a key exchange is to get a shared secret key between two parties without making it possible for users listening on the conversation to guess that shared key.
- Alice and Bob generates a
KeyPair
each. - Alice and Bob exchanges their
PublicKey
. - Alice mix her
PrivateKey
with Bob'sPublicKey
. This gives her the shared key. - Bob mixes his
PrivateKey
with Alice'sPublicKey
. This gives him the shared key. - Both Bob and Alice has the same shared key, which they can use for symmetric encryption for further communications.
use devolutions_crypto::key::{generate_keypair, mix_key_exchange, KeyVersion, KeyPair};
let bob_keypair: KeyPair = generate_keypair(KeyVersion::Latest);
let alice_keypair: KeyPair = generate_keypair(KeyVersion::Latest);
let bob_shared = mix_key_exchange(&bob_keypair.private_key, &alice_keypair.public_key).expect("key exchange should not fail");
let alice_shared = mix_key_exchange(&alice_keypair.private_key, &bob_keypair.public_key).expect("key exchange should not fail");
// They now have a shared secret!
assert_eq!(bob_shared, alice_shared);
PasswordHash
You can use this module to hash a password and validate it afterward. This is the recommended way to verify a user password on login.
use devolutions_crypto::password_hash::{hash_password, PasswordHashVersion};
let password = b"somesuperstrongpa$$w0rd!";
let hashed_password = hash_password(password, 10000, PasswordHashVersion::Latest);
assert!(hashed_password.verify_password(b"somesuperstrongpa$$w0rd!"));
assert!(!hashed_password.verify_password(b"someweakpa$$w0rd!"));
SecretSharing
This module is used to generate a key that is splitted in multiple Share
and that requires a specific amount of them to regenerate the key.
You can think of it as a "Break The Glass" scenario. You can
generate a key using this, lock your entire data by encrypting it
and then you will need, let's say, 3 out of the 5 administrators to decrypt
the data. That data could also be an API key or password of a super admin account.
use devolutions_crypto::secret_sharing::{generate_shared_key, join_shares, SecretSharingVersion, Share};
// You want a key of 32 bytes, splitted between 5 people, and I want a
// minimum of 3 of these shares to regenerate the key.
let shares: Vec<Share> = generate_shared_key(5, 3, 32, SecretSharingVersion::Latest).expect("generation shouldn't fail with the right parameters");
assert_eq!(shares.len(), 5);
let key = join_shares(&shares[2..5]).expect("joining shouldn't fail with the right shares");
Signature
This module is used to sign data using a keypair to certify its authenticity.
Generating Key Pairs
use devolutions_crypto::signing_key::{generate_signing_keypair, SigningKeyVersion, SigningKeyPair, SigningPublicKey};
let keypair: SigningKeyPair = generate_signing_keypair(SigningKeyVersion::Latest);
Signing Data
use devolutions_crypto::signature::{sign, Signature, SignatureVersion};
let signature: Signature = sign(b"this is some test data", &keypair, SignatureVersion::Latest);
Verifying the signature
use devolutions_crypto::signature::{sign, Signature, SignatureVersion};
assert!(signature.verify(b"this is some test data", &public_key));
Utils
These are a bunch of functions that can be useful when dealing with the library.
Key Generation
This is a method used to generate a random key. In almost all case, the length
parameter should be 32.
use devolutions_crypto::utils::generate_key;
let key = generate_key(32);
assert_eq!(32, key.len());
Key Derivation
This is a method used to generate a key from a password or another key. Useful for password-dependant cryptography. Salt should be a random 16 bytes array if possible and iterations should be 10000 or configurable by the user.
use devolutions_crypto::utils::{generate_key, derive_key};
let key = b"this is a secret password";
let salt = generate_key(16);
let iterations = 10000;
let length = 32;
let new_key = derive_key(key, &salt, iterations, length);
assert_eq!(32, new_key.len());
Underlying algorithms
As of the current version:
- Symmetric cryptography uses XChaCha20Poly1305
- Asymmetric cryptography uses Curve25519.
- Asymmetric encryption uses ECIES.
- Key exchange uses x25519, or ECDH over Curve25519
- Password Hashing uses PBKDF2-HMAC-SHA2-256
- Secret Sharing uses Shamir Secret sharing over GF256