npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@death_raider/neural-network

v2.0.3

Published

Simple to use Neural Network

Downloads

38

Readme

Neural Network

Installing

npm i @death_raider/neural-network

About

This is an easy to use Neural Network package with SGD using backpropagation as a gradient computing technique.

Creating the model

const NeuralNetwork = require("@death_raider/neural-network").NeuralNetwork
//creates ANN with 2 input nodes, 1 hidden layers with 2 hidden nodes and 1 output node
let network = new NeuralNetwork({
  input_nodes : 2,
  layer_count : [2],
  output_nodes :1,
  weight_bias_initilization_range : [-1,1]
});

Parameters like the activations for hidden layer and output layers are set as leaky relu and sigmoid respectively but can changed

//format for activation function = [ function ,  derivative of function ]
network.Activation.hidden = [(x)=>1/(1+Math.exp(-x)),(x)=>x*(1-x)] //sets activation for hidden layers as sigmoid function

Training, Testing and Using

For this example we'll be testing it on the XOR function.

There are 2 ways we can go about training:

  1. Inbuilt Function
function xor(){
  let inp = [Math.floor(Math.random()*2),Math.floor(Math.random()*2)]; //random inputs 0 or 1 per cell
  let out = (inp.reduce((a,b)=>a+b)%2 == 0)?[0]:[1]; //if even number of 1's in input then 0 else 1 as output
  return [inp,out]; //train or validation functions should have [input,output] format
}
network.train({
  TotalTrain : 1e+6, //total data for training (not epochs)
  batch_train : 1, //batch size for training
  trainFunc : xor, //training function to get data
  TotalVal : 1000, //total data for validation (not epochs)
  batch_val : 1, //batch size for validation
  validationFunc : xor, //validation function to get data
  learning_rate : 0.1, //learning rate (default = 0.0000001)
  momentum : 0.9 // momentum for SGD
});

The trainFunc and validationFunc recieve an input of the batch iteration and the current epoch which can be used in the functions.

NOTE: The validationFunc is called AFTER the training is done

Now to see the avg. test loss:

console.log("Average Validation Loss ->",network.Loss.Validation_Loss.reduce((a,b)=>a+b)/network.Loss.Validation_Loss.length);
// Result after running it a few times
// Average Validation Loss -> 0.00004760326022482792
// Average Validation Loss -> 0.000024864418333478723
// Average Validation Loss -> 0.000026908106414283446
  1. Iterative
for(let i = 0; i < 10000; i++){
  let [inputs,outputs] = xor()
  let dnn = network.trainIteration({
    input : inputs,
    desired : outputs,
  })
  network.update(dnn.Updates.updatedWeights,dnn.Updates.updatedBias,0.1)
  console.log(dnn.Cost,dnn.layers); //optional to view the loss and the hidden layers
}
// output after 10k iterations
// 0.00022788194782669534 [
//   [ 1, 1 ],
//   [ 0.6856085043616054, -0.6833685003507397 ],
//   [ 0.021348627488749498 ]
// ]

This iterative method can be used for visulizations, dynamic learning rate, etc...

To use the network:

// network.use(inputs)  --> returns the hidden node values as well
let output = [ //truth table for xor gate
  network.use([0,0]),
  network.use([0,1]),
  network.use([1,0]),
  network.use([1,1])
]

To get the gradients w.r.t the inputs (Questionable correct me if wrong values)

console.log( network.getInputGradients() );

Saving and Loading Models

This package allows to save the hyperparameters(weights and bias) in a file(s) and then unpack them, allowing us to use pretrained models. Saving the model couldnt be further from simplicity:

network.save(path)

Loading the model is asynchronous:

const {NeuralNetwork} = require("@death_raider/neural-network")
let network = new NeuralNetwork({
  input_nodes : 2,
  layer_count : [2],
  output_nodes :1,
  weight_bias_initilization_range : [-1,1]
});
(async () =>{
  await network.load(path) //make sure network is of correct structure
  let output = [  
    network.use([0,0]),  // --> returns the hidden node values as well
    network.use([0,1]),  // --> returns the hidden node values as well
    network.use([1,0]),  // --> returns the hidden node values as well
    network.use([1,1])   // --> returns the hidden node values as well
  ]
})()

Linear Algebra

This class is not the most optimized as it can be, but the implementation of certain functions are based on traditional methods to solving them. Those functions will be marked with the * symbol.

Base function

The base function (basefunc) is a recursive function that takes in 3 parameters a, b, and Opt where a is an array and b is an object and opt is a function. The basefunc goes over all elements of a and also b if b is an array and then passes those elements to the opt function defined by the user. opt will take in 2 parameters and the return can be any object.

const {LinearAlgebra} = require("@death_raider/neural-network")
linearA = new LinearAlgebra
let a = [
    [1,2,3,4],
    [5,6,7,8]
]
let b = [
    [8,7,6,5],
    [4,3,2,1]
]
function foo(p,q){
    return p*q
}
console.log(linearA.basefunc(a,b,foo))
// [ [ 8, 14, 18, 20 ], [ 20, 18, 14, 8 ] ]

Matrix Manipulation

#Convolution

This class can compute the convolution of an 3 dimensional array with a filter of 4 dimensions using the im2row operator, more details can be found here. Aside from convolution, It also provides the Input gradients and updates the filter based on the previous gradients and a learning rate.

const {Convolution, LinearAlgebra} = require("@death_raider/neural-network")
const conv = new Convolution
let input = [[
    [0,0,1,1,0,0],
    [0,0,1,1,0,0],
    [1,1,1,1,1,1],
    [1,1,1,1,1,1],
    [0,0,1,1,0,0],
    [0,0,1,1,0,0]
]] // shape ->  1x6x6
let filter = [
    [[
        [0,1,0],
        [0,1,0],
        [0,1,0]
    ]],
    [[
        [0,0,0],
        [1,1,1],
        [0,0,0]
    ]]
] // shape -> 2x1x3x3
output = conv.convolution(input,filter,true,(x)=>x)
console.log(output)
// [
//   [
//       [ 1, 3, 3, 1 ],
//       [ 2, 3, 3, 2 ],
//       [ 2, 3, 3, 2 ],
//       [ 1, 3, 3, 1 ]
//   ],
//   [
//       [ 1, 2, 2, 1 ],
//       [ 3, 3, 3, 3 ],
//       [ 3, 3, 3, 3 ],
//       [ 1, 2, 2, 1 ]
//   ]
// ]
let fake_grads = [
    [0,0],[1,0],[0,1],[1,1],[0,0],[1,0],[0,1],[1,0],
    [0,0],[1,1],[0,1],[1,0],[0,1],[1,0],[0,1],[1,0]
]
let next_layer_grads = conv.layerGrads(fake_grads)
console.log(next_layer_grads)
// [
//   [
//     [ 0, 0, 0, 0, 0, 0 ],
//     [ 0, 1, 1, 2, 2, 1 ],
//     [ 0, 1, 2, 2, 2, 0 ],
//     [ 1, 4, 5, 5, 4, 1 ],
//     [ 1, 2, 2, 1, 1, 0 ],
//     [ 0, 1, 1, 1, 1, 0 ]
//   ]
// ]

If u have PreviousGradients of shape DxH"xW" then you can do this to convert into that format using the LinearAlgebra class

let fake_grads = [
    [
        [0,1,1,0],
        [0,1,1,0],
        [0,1,1,0],
        [0,1,1,0]
    ],
    [
        [0,0,0,0],
        [1,1,1,1],
        [1,1,1,1],
        [0,0,0,0]
    ]
]
const La = new LinearAlgebra
fake_grads = La.vectorize(fake_grads)
fake_grads = La.reconstructMatrix(fake_grads,{x:4*4,y:2,z:1}).flat(1)
fake_grads = La.transpose(fake_grads)
let next_layer_grads = conv.layerGrads(fake_grads)
console.log(next_layer_grads)
// [
//   [
//     [ 0, 0, 1, 1, 0, 0 ],
//     [ 0, 0, 2, 2, 0, 0 ],
//     [ 1, 2, 6, 6, 2, 1 ],
//     [ 1, 2, 6, 6, 2, 1 ],
//     [ 0, 0, 2, 2, 0, 0 ],
//     [ 0, 0, 1, 1, 0, 0 ]
//   ]
// ]
conv.filterGrads(fake_grads,0.1)
conv,saveFilters("path")

Max Pool

Does a max pool on a matrix using the im2row method.

const {MaxPool} = require("@death_raider/neural-network")
const mxpool = new MaxPool
let input = [[
    [0,0,1,1,0,0],
    [0,0,1,1,0,0],
    [1,1,1,1,1,1],
    [1,1,1,1,1,1],
    [0,0,1,1,0,0],
    [0,0,1,1,0,0]
]] // shape ->  1x6x6

let output = mxpool.pool(input)//other arguments default to 2,2,and true
console.log(output)
// [
//     [
//         [ 0, 1, 0 ],
//         [ 1, 1, 1 ],
//         [ 0, 1, 0 ]
//     ]
// ]
let fake_grads = [
    [ 0 ], [ 1 ],
    [ 0 ], [ 1 ],
    [ 5 ], [ 1 ],
    [ 0 ], [ 1 ],
    [ 0 ]
]
let input_grads = mxpool.layerGrads(fake_grads)
console.log(input_grads);
// [
//   [ 0 ], [ 0 ], [ 1 ], [ 0 ], [ 0 ],
//   [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ],
//   [ 0 ], [ 0 ], [ 1 ], [ 0 ], [ 5 ],
//   [ 0 ], [ 1 ], [ 0 ], [ 0 ], [ 0 ],
//   [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ],
//   [ 0 ], [ 1 ], [ 0 ], [ 0 ], [ 0 ],
//   [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ],
//   [ 0 ]
// ]
mxpool.savePool("path")

#Application of CNN

In the Application.js file, I have created a simple CNN for mnist number recognition but there are more modules needed to install first.

npm install mnist cli-progress
pip install numpy matplotlib

#Future Updates

  1. Convolution and other image processing functions ✔️done
  2. Convolutional Neural Network (CNN) ✔️ done
  3. Visualization of Neural Network ❌ pending (next)
  4. Recurrent Neural Network (RNN) ❌ pending
  5. Long Short Term Memory (LSTM) ❌ pending