npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

@datafire/opendatasoft

v5.0.0

Published

DataFire integration for opendatasoft

Downloads

13

Readme

@datafire/opendatasoft

Client library for opendatasoft

Installation and Usage

npm install --save @datafire/opendatasoft
let opendatasoft = require('@datafire/opendatasoft').create({
  api_key: "",
  username: "",
  password: ""
});

.then(data => {
  console.log(data);
});

Description

Actions

getRoot

API entry point

Provides links for:

  • catalog, your domain's list of datasets
  • opendatasoft, all datasets on the Opendatasoft network
opendatasoft.getRoot(null, context)

Input

This action has no parameters

Output

  • output object
    • links array

getPages

List of all pages from this portal.

opendatasoft.getPages(null, context)

Input

This action has no parameters

Output

  • output object
    • links array
    • pages array
      • items object

getPage

A single page's metadata from this portal

opendatasoft.getPage({
  "slug": ""
}, context)

Input

  • input object
    • slug required string: Page slug.

Output

  • output object

getSource

Source entry points

Provides links for the source's datasets and metadata.

opendatasoft.getSource({
  "source": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.

Output

  • output object
    • links array

aggregateDatasets

Compute aggregations from catalog and return a list of each aggregate indexed by their names.

opendatasoft.aggregateDatasets({
  "source": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • select string: A select expression can be used to add, remove or change fields to return.
    • group_by string: A group by expression defines a grouping function for an aggregation.
    • where array: An array of filters.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • order_by array: A list of field names or aggregation, followed by an order (asc | desc).
    • offset integer: Index of the first item to return (starting at 0).
    • limit integer: Number of items to return.

Output

getDatasets

List of available datasets, each with their endpoints, paginated.

Links provided:

  • previous page
  • next page
  • last page
  • first page
opendatasoft.getDatasets({
  "source": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • where array: An array of filters.
    • search array: An array of full text search.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • limit integer: Number of items to return.
    • offset integer: Index of the first item to return (starting at 0).
    • sort array: A list of field names, each possibly prefixed with a minus (-).
    • pretty boolean: Activate pretty print
    • timezone string: Set timezone for datetime fields
    • include_app_metas boolean: Explicitely request application metas for each datasets.

Output

  • output object
    • datasets array
    • links array
    • total_count integer

getDataset

List of available endpoints for the specified dataset, with metadata and endpoints.

Will provide links for:

  • the attachments endpoint
  • the files endpoint
  • the records endpoint
  • the catalog endpoint
opendatasoft.getDataset({
  "source": "",
  "dataset_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • pretty boolean: Activate pretty print
    • timezone string: Set timezone for datetime fields
    • select string: A select expression can be used to add, remove or change fields to return.
    • include_app_metas boolean: Explicitely request application metas for each datasets.

Output

aggregateRecords

Compute aggregations from dataset records and return a list of each aggregate indexed by their names.

opendatasoft.aggregateRecords({
  "source": "",
  "dataset_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • select string: A select expression can be used to add, remove or change fields to return.
    • group_by string: A group by expression defines a grouping function for an aggregation.
    • where array: An array of filters.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • order_by array: A list of field names or aggregation, followed by an order (asc | desc).
    • limit integer: Number of items to return.
    • offset integer: Index of the first item to return (starting at 0).

Output

getDatasetAttachements

Get list of all available attachments

opendatasoft.getDatasetAttachements({
  "source": "",
  "dataset_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.

Output

downloadDatasetAttachement

Download attachment

opendatasoft.downloadDatasetAttachement({
  "source": "",
  "dataset_id": "",
  "attachment_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • attachment_id required string

Output

Output schema unknown

exportRecordsCSV

Export dataset in CSV format

opendatasoft.exportRecordsCSV({
  "source": "",
  "dataset_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • where array: An array of filters.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • limit integer: Number of items to return in export.
    • offset integer: Index of the first item to return (starting at 0).
    • sort array: A list of field names, each possibly prefixed with a minus (-).
    • select string: A select expression can be used to add, remove or change fields to return.
    • timezone string: Set timezone for datetime fields
    • delimiter string (values: ,, ;, |): Provide a different delimiter (default ',').

Output

  • output file

exportRecordsGEOJSON

Export dataset in GEOJSON format

opendatasoft.exportRecordsGEOJSON({
  "source": "",
  "dataset_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • where array: An array of filters.
    • search array: An array of full text search.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • limit integer: Number of items to return in export.
    • offset integer: Index of the first item to return (starting at 0).
    • sort array: A list of field names, each possibly prefixed with a minus (-).
    • select string: A select expression can be used to add, remove or change fields to return.
    • timezone string: Set timezone for datetime fields
    • pretty boolean: Activate pretty print

Output

  • output file

exportRecordsICAL

Export dataset in ICAL format

opendatasoft.exportRecordsICAL({
  "source": "",
  "dataset_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • where array: An array of filters.
    • search array: An array of full text search.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • limit integer: Number of items to return in export.
    • offset integer: Index of the first item to return (starting at 0).
    • sort array: A list of field names, each possibly prefixed with a minus (-).
    • select string: A select expression can be used to add, remove or change fields to return.
    • timezone string: Set timezone for datetime fields

Output

  • output file

exportRecordsJSON

Export dataset in JSON format

opendatasoft.exportRecordsJSON({
  "source": "",
  "dataset_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • where array: An array of filters.
    • search array: An array of full text search.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • limit integer: Number of items to return in export.
    • offset integer: Index of the first item to return (starting at 0).
    • sort array: A list of field names, each possibly prefixed with a minus (-).
    • select string: A select expression can be used to add, remove or change fields to return.
    • pretty boolean: Activate pretty print
    • timezone string: Set timezone for datetime fields

Output

  • output file

exportRecordsOV2

Export dataset in OV2 format

opendatasoft.exportRecordsOV2({
  "source": "",
  "dataset_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • where array: An array of filters.
    • search array: An array of full text search.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • limit integer: Number of items to return in export.
    • offset integer: Index of the first item to return (starting at 0).
    • sort array: A list of field names, each possibly prefixed with a minus (-).
    • select string: A select expression can be used to add, remove or change fields to return.
    • timezone string: Set timezone for datetime fields

Output

  • output file

exportRecordsSHP

Export dataset in Esri shapefile (shp) format

opendatasoft.exportRecordsSHP({
  "source": "",
  "dataset_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • where array: An array of filters.
    • search array: An array of full text search.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • limit integer: Number of items to return in export.
    • offset integer: Index of the first item to return (starting at 0).
    • sort array: A list of field names, each possibly prefixed with a minus (-).
    • select string: A select expression can be used to add, remove or change fields to return.
    • timezone string: Set timezone for datetime fields

Output

  • output file

exportRecordsXLS

Export dataset in XLS (Excel) format

opendatasoft.exportRecordsXLS({
  "source": "",
  "dataset_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • where array: An array of filters.
    • search array: An array of full text search.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • limit integer: Number of items to return in export.
    • offset integer: Index of the first item to return (starting at 0).
    • sort array: A list of field names, each possibly prefixed with a minus (-).
    • select string: A select expression can be used to add, remove or change fields to return.
    • timezone string: Set timezone for datetime fields

Output

  • output file

getRecordsFacets

Enumerate facets values for records and return a list of values for each facet. Can be used to implement guided navigation in large result sets.

Read the facets documentation for more details.

opendatasoft.getRecordsFacets({
  "source": "",
  "dataset_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • where array: An array of filters.
    • search array: An array of full text search.
    • timezone string: Set timezone for datetime fields

Output

sendDatasetFeedback

Create new feedback entry.

opendatasoft.sendDatasetFeedback({
  "source": "",
  "dataset_id": "",
  "feedback": null
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • feedback required object
      • comment string
      • newValues object: New record value
      • recordid string: Feedback entry's recordid
      • schema object: Record schema

Output

Output schema unknown

getDatasetFile

Download file

opendatasoft.getDatasetFile({
  "source": "",
  "dataset_id": "",
  "file_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • file_id required string
    • thumbnail_size string: Set the size of the thumbnail representing the resource (attachment, image or file)

Output

Output schema unknown

getRecords

Search dataset's records.

opendatasoft.getRecords({
  "source": "",
  "dataset_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • where array: An array of filters.
    • search array: An array of full text search.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • limit integer: Number of items to return.
    • offset integer: Index of the first item to return (starting at 0).
    • sort array: A list of field names, each possibly prefixed with a minus (-).
    • select string: A select expression can be used to add, remove or change fields to return.
    • pretty boolean: Activate pretty print
    • timezone string: Set timezone for datetime fields

Output

  • output object
    • links array
    • records array
    • total_count integer

getRecord

Retrieve a single record based on its ID.

opendatasoft.getRecord({
  "source": "",
  "dataset_id": "",
  "record_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • record_id required string
    • pretty boolean: Activate pretty print
    • timezone string: Set timezone for datetime fields
    • select string: A select expression can be used to add, remove or change fields to return.

Output

getDatasetReuses

Get list of reuses

opendatasoft.getDatasetReuses({
  "source": "",
  "dataset_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • offset integer: Index of the first item to return (starting at 0).
    • limit integer: Number of items to return.
    • timezone string: Set timezone for datetime fields

Output

  • output object

getDatasetReuse

Retrieve a single reuse based on its ID.

opendatasoft.getDatasetReuse({
  "source": "",
  "dataset_id": "",
  "reuse_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • reuse_id required string
    • timezone string: Set timezone for datetime fields

Output

  • output object

getDatasetSnapshots

List of all snapshots for this dataset.

opendatasoft.getDatasetSnapshots({
  "source": "",
  "dataset_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • timezone string: Set timezone for datetime fields

Output

  • output object

downloadDatasetSnapshot

List of all snapshots for this dataset.

opendatasoft.downloadDatasetSnapshot({
  "source": "",
  "dataset_id": "",
  "snapshot_id": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • dataset_id required string: Dataset identifier.
    • snapshot_id required string
    • timezone string: Set timezone for datetime fields

Output

Output schema unknown

exportDatasetsCSV

Export catalog (source) in CSV format

opendatasoft.exportDatasetsCSV({
  "source": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • where array: An array of filters.
    • search array: An array of full text search.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • limit integer: Number of items to return.
    • offset integer: Index of the first item to return (starting at 0).
    • timezone string: Set timezone for datetime fields
    • include_app_metas boolean: Explicitely request application metas for each datasets.
    • delimiter string (values: ,, ;, |): Provide a different delimiter (default ',').

Output

  • output file

exportDatasetsJson

Export catalog (source) in JSON format

opendatasoft.exportDatasetsJson({
  "source": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • where array: An array of filters.
    • search array: An array of full text search.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • limit integer: Number of items to return.
    • offset integer: Index of the first item to return (starting at 0).
    • pretty boolean: Activate pretty print
    • timezone string: Set timezone for datetime fields
    • include_app_metas boolean: Explicitely request application metas for each datasets.

Output

  • output file

exportDatasetsRDF

Export catalog (source) in RDF/XML format

opendatasoft.exportDatasetsRDF({
  "source": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • where array: An array of filters.
    • search array: An array of full text search.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • limit integer: Number of items to return.
    • offset integer: Index of the first item to return (starting at 0).
    • timezone string: Set timezone for datetime fields
    • include_app_metas boolean: Explicitely request application metas for each datasets.

Output

  • output file

exportDatasetsRSS

Export catalog (source) in RSS format

opendatasoft.exportDatasetsRSS({
  "source": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • where array: An array of filters.
    • search array: An array of full text search.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • limit integer: Number of items to return.
    • offset integer: Index of the first item to return (starting at 0).
    • timezone string: Set timezone for datetime fields
    • include_app_metas boolean: Explicitely request application metas for each datasets.

Output

  • output file

exportDatasetsTTL

Export catalog (source) in TTL (turtle/rdf) format

opendatasoft.exportDatasetsTTL({
  "source": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • where array: An array of filters.
    • search array: An array of full text search.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • limit integer: Number of items to return.
    • offset integer: Index of the first item to return (starting at 0).
    • timezone string: Set timezone for datetime fields
    • include_app_metas boolean: Explicitely request application metas for each datasets.

Output

  • output file

exportDatasetsXLS

Export catalog (source) in XLS (Excel) format

opendatasoft.exportDatasetsXLS({
  "source": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • where array: An array of filters.
    • search array: An array of full text search.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • limit integer: Number of items to return.
    • offset integer: Index of the first item to return (starting at 0).
    • timezone string: Set timezone for datetime fields
    • include_app_metas boolean: Explicitely request application metas for each datasets.

Output

  • output file

getDatasetsFacets

Enumerate facets values for datasets and return a list of values for each facet. Can be used to implement guided navigation in large result sets.

Read the facets documentation for more details.

opendatasoft.getDatasetsFacets({
  "source": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • facet array: A facet is a field used for simple filtering (through the parameters refine and exclude) or exploration (with the endpoint /facets).
    • refine array: An array of facet filters. For example city:Paris or modified:2019/12.
    • exclude array: An array of facet filters. For example city:Paris or modified:2019/12.
    • where array: An array of filters.
    • search array: An array of full text search.
    • timezone string: Set timezone for datetime fields

Output

getMetadataTemplatesTypes

List of available metadata templates types, each with their endpoints.

opendatasoft.getMetadataTemplatesTypes({
  "source": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.

Output

  • output object
    • links array

getMetadataTemplatesType

List of metadata templates available for this type.

opendatasoft.getMetadataTemplatesType({
  "source": "",
  "metadata_template_type": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • metadata_template_type required string (values: basic, interop, extra)

Output

  • output object

getMetadataTemplate

A single metadata_template

opendatasoft.getMetadataTemplate({
  "source": "",
  "metadata_template_type": "",
  "metadata_template_name": ""
}, context)

Input

  • input object
    • source required string (values: catalog, opendatasoft, monitoring): Each source represents a different catalog of datasets you'll be able to query.
    • metadata_template_type required string (values: basic, interop, extra)
    • metadata_template_name required string

Output

Definitions

aggregation

  • aggregation object: Result of an aggregation request.

attachment

  • attachment object
    • href string
    • metas object

dataset

  • dataset object
    • attachments array
      • items object
    • data_visible boolean
    • dataset_id string
    • features array: A map of available features for a dataset, with the fields they apply to.
      • items string
    • fields array
      • items object
        • annotations object
        • description string
        • label string
        • name string
        • type string
    • has_records boolean
    • metas object

datasets

facet_enumeration

facet_value_enumeration

link

  • link object
    • href string
    • rel string

links

  • links array

metadata_template

  • metadata_template object
    • name string
    • schema array
      • items object
    • type string

page

  • page object
    • description string
    • slug string
    • title object: A localized string (that is an object where the keys are language codes and the values translations of a same
      • en string
      • fr string

query_string

  • query_string string: Query string using the query language.

record

  • record object
    • fields object
    • id string
    • size integer
    • timestamp string

records

reuse

  • reuse object
    • created_at string: Date when the reuse was submitted.
    • id string: reuse id
    • thumbnail string: URL illustrating the work.
    • title string: Short description of the user's work.
    • url string: URL where the work can be accessed publicly.
    • user object
      • first_name string
      • last_name string
      • username string

snapshot

  • snapshot object
    • created_at string
    • description string
    • href string
    • snapshot_id string

timezone

  • timezone string: A timezone