@datafire/amazonaws_machinelearning
v5.0.0
Published
DataFire integration for Amazon Machine Learning
Downloads
6
Readme
@datafire/amazonaws_machinelearning
Client library for Amazon Machine Learning
Installation and Usage
npm install --save @datafire/amazonaws_machinelearning
let amazonaws_machinelearning = require('@datafire/amazonaws_machinelearning').create({
accessKeyId: "",
secretAccessKey: "",
region: ""
});
amazonaws_machinelearning.AddTags({
"Tags": [],
"ResourceId": "",
"ResourceType": ""
}).then(data => {
console.log(data);
});
Description
Definition of the public APIs exposed by Amazon Machine Learning
Actions
AddTags
amazonaws_machinelearning.AddTags({
"Tags": [],
"ResourceId": "",
"ResourceType": ""
}, context)
Input
- input
object
- ResourceId required EntityId
- ResourceType required TaggableResourceType
- Tags required TagList
Output
- output AddTagsOutput
CreateBatchPrediction
amazonaws_machinelearning.CreateBatchPrediction({
"BatchPredictionId": "",
"MLModelId": "",
"BatchPredictionDataSourceId": "",
"OutputUri": ""
}, context)
Input
- input
object
- BatchPredictionDataSourceId required EntityId
- BatchPredictionId required EntityId
- BatchPredictionName EntityName
- MLModelId required EntityId
- OutputUri required S3Url
Output
- output CreateBatchPredictionOutput
CreateDataSourceFromRDS
amazonaws_machinelearning.CreateDataSourceFromRDS({
"DataSourceId": "",
"RDSData": {
"DatabaseInformation": {
"InstanceIdentifier": "",
"DatabaseName": ""
},
"SelectSqlQuery": "",
"DatabaseCredentials": {
"Username": "",
"Password": ""
},
"S3StagingLocation": "",
"ResourceRole": "",
"ServiceRole": "",
"SubnetId": "",
"SecurityGroupIds": []
},
"RoleARN": ""
}, context)
Input
- input
object
- ComputeStatistics ComputeStatistics
- DataSourceId required EntityId
- DataSourceName EntityName
- RDSData required RDSDataSpec
- RoleARN required RoleARN
Output
CreateDataSourceFromRedshift
amazonaws_machinelearning.CreateDataSourceFromRedshift({
"DataSourceId": "",
"DataSpec": {
"DatabaseInformation": {
"DatabaseName": "",
"ClusterIdentifier": ""
},
"SelectSqlQuery": "",
"DatabaseCredentials": {
"Username": "",
"Password": ""
},
"S3StagingLocation": ""
},
"RoleARN": ""
}, context)
Input
- input
object
- ComputeStatistics ComputeStatistics
- DataSourceId required EntityId
- DataSourceName EntityName
- DataSpec required RedshiftDataSpec
- RoleARN required RoleARN
Output
CreateDataSourceFromS3
amazonaws_machinelearning.CreateDataSourceFromS3({
"DataSourceId": "",
"DataSpec": {
"DataLocationS3": ""
}
}, context)
Input
- input
object
- ComputeStatistics ComputeStatistics
- DataSourceId required EntityId
- DataSourceName EntityName
- DataSpec required S3DataSpec
Output
- output CreateDataSourceFromS3Output
CreateEvaluation
amazonaws_machinelearning.CreateEvaluation({
"EvaluationId": "",
"MLModelId": "",
"EvaluationDataSourceId": ""
}, context)
Input
- input
object
- EvaluationDataSourceId required EntityId
- EvaluationId required EntityId
- EvaluationName EntityName
- MLModelId required EntityId
Output
- output CreateEvaluationOutput
CreateMLModel
amazonaws_machinelearning.CreateMLModel({
"MLModelId": "",
"MLModelType": "",
"TrainingDataSourceId": ""
}, context)
Input
- input
object
- MLModelId required EntityId
- MLModelName EntityName
- MLModelType required MLModelType
- Parameters TrainingParameters
- Recipe Recipe
- RecipeUri S3Url
- TrainingDataSourceId required EntityId
Output
- output CreateMLModelOutput
CreateRealtimeEndpoint
amazonaws_machinelearning.CreateRealtimeEndpoint({
"MLModelId": ""
}, context)
Input
- input
object
- MLModelId required EntityId
Output
- output CreateRealtimeEndpointOutput
DeleteBatchPrediction
amazonaws_machinelearning.DeleteBatchPrediction({
"BatchPredictionId": ""
}, context)
Input
- input
object
- BatchPredictionId required EntityId
Output
- output DeleteBatchPredictionOutput
DeleteDataSource
amazonaws_machinelearning.DeleteDataSource({
"DataSourceId": ""
}, context)
Input
- input
object
- DataSourceId required EntityId
Output
- output DeleteDataSourceOutput
DeleteEvaluation
amazonaws_machinelearning.DeleteEvaluation({
"EvaluationId": ""
}, context)
Input
- input
object
- EvaluationId required EntityId
Output
- output DeleteEvaluationOutput
DeleteMLModel
amazonaws_machinelearning.DeleteMLModel({
"MLModelId": ""
}, context)
Input
- input
object
- MLModelId required EntityId
Output
- output DeleteMLModelOutput
DeleteRealtimeEndpoint
amazonaws_machinelearning.DeleteRealtimeEndpoint({
"MLModelId": ""
}, context)
Input
- input
object
- MLModelId required EntityId
Output
- output DeleteRealtimeEndpointOutput
DeleteTags
amazonaws_machinelearning.DeleteTags({
"TagKeys": [],
"ResourceId": "",
"ResourceType": ""
}, context)
Input
- input
object
- ResourceId required EntityId
- ResourceType required TaggableResourceType
- TagKeys required TagKeyList
Output
- output DeleteTagsOutput
DescribeBatchPredictions
amazonaws_machinelearning.DescribeBatchPredictions({}, context)
Input
- input
object
- Limit
string
- NextToken
string
- EQ ComparatorValue
- FilterVariable BatchPredictionFilterVariable
- GE ComparatorValue
- GT ComparatorValue
- LE ComparatorValue
- LT ComparatorValue
- Limit PageLimit
- NE ComparatorValue
- NextToken StringType
- Prefix ComparatorValue
- SortOrder SortOrder
- Limit
Output
DescribeDataSources
amazonaws_machinelearning.DescribeDataSources({}, context)
Input
- input
object
- Limit
string
- NextToken
string
- EQ ComparatorValue
- FilterVariable DataSourceFilterVariable
- GE ComparatorValue
- GT ComparatorValue
- LE ComparatorValue
- LT ComparatorValue
- Limit PageLimit
- NE ComparatorValue
- NextToken StringType
- Prefix ComparatorValue
- SortOrder SortOrder
- Limit
Output
- output DescribeDataSourcesOutput
DescribeEvaluations
amazonaws_machinelearning.DescribeEvaluations({}, context)
Input
- input
object
- Limit
string
- NextToken
string
- EQ ComparatorValue
- FilterVariable EvaluationFilterVariable
- GE ComparatorValue
- GT ComparatorValue
- LE ComparatorValue
- LT ComparatorValue
- Limit PageLimit
- NE ComparatorValue
- NextToken StringType
- Prefix ComparatorValue
- SortOrder SortOrder
- Limit
Output
- output DescribeEvaluationsOutput
DescribeMLModels
amazonaws_machinelearning.DescribeMLModels({}, context)
Input
- input
object
- Limit
string
- NextToken
string
- EQ ComparatorValue
- FilterVariable MLModelFilterVariable
- GE ComparatorValue
- GT ComparatorValue
- LE ComparatorValue
- LT ComparatorValue
- Limit PageLimit
- NE ComparatorValue
- NextToken StringType
- Prefix ComparatorValue
- SortOrder SortOrder
- Limit
Output
- output DescribeMLModelsOutput
DescribeTags
amazonaws_machinelearning.DescribeTags({
"ResourceId": "",
"ResourceType": ""
}, context)
Input
- input
object
- ResourceId required EntityId
- ResourceType required TaggableResourceType
Output
- output DescribeTagsOutput
GetBatchPrediction
amazonaws_machinelearning.GetBatchPrediction({
"BatchPredictionId": ""
}, context)
Input
- input
object
- BatchPredictionId required EntityId
Output
- output GetBatchPredictionOutput
GetDataSource
amazonaws_machinelearning.GetDataSource({
"DataSourceId": ""
}, context)
Input
Output
- output GetDataSourceOutput
GetEvaluation
amazonaws_machinelearning.GetEvaluation({
"EvaluationId": ""
}, context)
Input
- input
object
- EvaluationId required EntityId
Output
- output GetEvaluationOutput
GetMLModel
amazonaws_machinelearning.GetMLModel({
"MLModelId": ""
}, context)
Input
Output
- output GetMLModelOutput
Predict
amazonaws_machinelearning.Predict({
"MLModelId": "",
"Record": [],
"PredictEndpoint": ""
}, context)
Input
Output
- output PredictOutput
UpdateBatchPrediction
amazonaws_machinelearning.UpdateBatchPrediction({
"BatchPredictionId": "",
"BatchPredictionName": ""
}, context)
Input
- input
object
- BatchPredictionId required EntityId
- BatchPredictionName required EntityName
Output
- output UpdateBatchPredictionOutput
UpdateDataSource
amazonaws_machinelearning.UpdateDataSource({
"DataSourceId": "",
"DataSourceName": ""
}, context)
Input
- input
object
- DataSourceId required EntityId
- DataSourceName required EntityName
Output
- output UpdateDataSourceOutput
UpdateEvaluation
amazonaws_machinelearning.UpdateEvaluation({
"EvaluationId": "",
"EvaluationName": ""
}, context)
Input
- input
object
- EvaluationId required EntityId
- EvaluationName required EntityName
Output
- output UpdateEvaluationOutput
UpdateMLModel
amazonaws_machinelearning.UpdateMLModel({
"MLModelId": ""
}, context)
Input
- input
object
- MLModelId required EntityId
- MLModelName EntityName
- ScoreThreshold ScoreThreshold
Output
- output UpdateMLModelOutput
Definitions
AddTagsInput
- AddTagsInput
object
- ResourceId required EntityId
- ResourceType required TaggableResourceType
- Tags required TagList
AddTagsOutput
- AddTagsOutput
object
: Amazon ML returns the following elements.- ResourceId EntityId
- ResourceType TaggableResourceType
Algorithm
- Algorithm
string
(values: sgd): The function used to train an MLModel. Training choices supported by Amazon ML include the following: SGD - Stochastic Gradient Descent. RandomForest - Random forest of decision trees.
AwsUserArn
- AwsUserArn
string
: An Amazon Web Service (AWS) user account identifier. The account identifier can be an AWS root account or an AWS Identity and Access Management (IAM) user.
BatchPrediction
- BatchPrediction
object
: Represents the output of a GetBatchPrediction operation. The content consists of the detailed metadata, the status, and the data file information of a Batch Prediction.- BatchPredictionDataSourceId EntityId
- BatchPredictionId EntityId
- ComputeTime LongType
- CreatedAt EpochTime
- CreatedByIamUser AwsUserArn
- FinishedAt EpochTime
- InputDataLocationS3 S3Url
- InvalidRecordCount LongType
- LastUpdatedAt EpochTime
- MLModelId EntityId
- Message Message
- Name EntityName
- OutputUri S3Url
- StartedAt EpochTime
- Status EntityStatus
- TotalRecordCount LongType
BatchPredictionFilterVariable
- BatchPredictionFilterVariable
string
(values: CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI): A list of the variables to use in searching or filtering BatchPrediction. CreatedAt - Sets the search criteria to BatchPrediction creation date. Status - Sets the search criteria to BatchPrediction status. Name - Sets the search criteria to the contents of BatchPrediction Name. IAMUser - Sets the search criteria to the user account that invoked the BatchPrediction creation. MLModelId - Sets the search criteria to the MLModel used in the BatchPrediction. DataSourceId - Sets the search criteria to the DataSource used in the BatchPrediction. DataURI - Sets the search criteria to the data file(s) used in the BatchPrediction. The URL can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.
BatchPredictions
- BatchPredictions
array
- items BatchPrediction
ComparatorValue
- ComparatorValue
string
: The value specified in a filtering condition. The ComparatorValue becomes the reference value when matching or evaluating data values in filtering and searching functions.
ComputeStatistics
- ComputeStatistics
boolean
CreateBatchPredictionInput
- CreateBatchPredictionInput
object
- BatchPredictionDataSourceId required EntityId
- BatchPredictionId required EntityId
- BatchPredictionName EntityName
- MLModelId required EntityId
- OutputUri required S3Url
CreateBatchPredictionOutput
- CreateBatchPredictionOutput
object
: Represents the output of a CreateBatchPrediction operation, and is an acknowledgement that Amazon ML received the request. The CreateBatchPrediction operation is asynchronous. You can poll for status updates by using the >GetBatchPrediction operation and checking the Status parameter of the result.- BatchPredictionId EntityId
CreateDataSourceFromRDSInput
- CreateDataSourceFromRDSInput
object
- ComputeStatistics ComputeStatistics
- DataSourceId required EntityId
- DataSourceName EntityName
- RDSData required RDSDataSpec
- RoleARN required RoleARN
CreateDataSourceFromRDSOutput
- CreateDataSourceFromRDSOutput
object
: Represents the output of a CreateDataSourceFromRDS operation, and is an acknowledgement that Amazon ML received the request. The CreateDataSourceFromRDS> operation is asynchronous. You can poll for updates by using the GetBatchPrediction operation and checking the Status parameter. You can inspect the Message when Status shows up as FAILED. You can also check the progress of the copy operation by going to the DataPipeline console and looking up the pipeline using the pipelineId from the describe call.- DataSourceId EntityId
CreateDataSourceFromRedshiftInput
- CreateDataSourceFromRedshiftInput
object
- ComputeStatistics ComputeStatistics
- DataSourceId required EntityId
- DataSourceName EntityName
- DataSpec required RedshiftDataSpec
- RoleARN required RoleARN
CreateDataSourceFromRedshiftOutput
- CreateDataSourceFromRedshiftOutput
object
: Represents the output of a CreateDataSourceFromRedshift operation, and is an acknowledgement that Amazon ML received the request. The CreateDataSourceFromRedshift operation is asynchronous. You can poll for updates by using the GetBatchPrediction operation and checking the Status parameter.- DataSourceId EntityId
CreateDataSourceFromS3Input
- CreateDataSourceFromS3Input
object
- ComputeStatistics ComputeStatistics
- DataSourceId required EntityId
- DataSourceName EntityName
- DataSpec required S3DataSpec
CreateDataSourceFromS3Output
- CreateDataSourceFromS3Output
object
: Represents the output of a CreateDataSourceFromS3 operation, and is an acknowledgement that Amazon ML received the request. The CreateDataSourceFromS3 operation is asynchronous. You can poll for updates by using the GetBatchPrediction operation and checking the Status parameter.- DataSourceId EntityId
CreateEvaluationInput
- CreateEvaluationInput
object
- EvaluationDataSourceId required EntityId
- EvaluationId required EntityId
- EvaluationName EntityName
- MLModelId required EntityId
CreateEvaluationOutput
- CreateEvaluationOutput
object
: Represents the output of a CreateEvaluation operation, and is an acknowledgement that Amazon ML received the request. CreateEvaluation operation is asynchronous. You can poll for status updates by using the GetEvcaluation operation and checking the Status parameter.- EvaluationId EntityId
CreateMLModelInput
- CreateMLModelInput
object
- MLModelId required EntityId
- MLModelName EntityName
- MLModelType required MLModelType
- Parameters TrainingParameters
- Recipe Recipe
- RecipeUri S3Url
- TrainingDataSourceId required EntityId
CreateMLModelOutput
- CreateMLModelOutput
object
: Represents the output of a CreateMLModel operation, and is an acknowledgement that Amazon ML received the request. The CreateMLModel operation is asynchronous. You can poll for status updates by using the GetMLModel operation and checking the Status parameter.- MLModelId EntityId
CreateRealtimeEndpointInput
- CreateRealtimeEndpointInput
object
- MLModelId required EntityId
CreateRealtimeEndpointOutput
- CreateRealtimeEndpointOutput
object
: Represents the output of an CreateRealtimeEndpoint operation. The result contains the MLModelId and the endpoint information for the MLModel. The endpoint information includes the URI of the MLModel; that is, the location to send online prediction requests for the specified MLModel.- MLModelId EntityId
- RealtimeEndpointInfo RealtimeEndpointInfo
DataRearrangement
- DataRearrangement
string
DataSchema
- DataSchema
string
: The schema of a DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource. The DataSource schema is expressed in JSON format. DataSchema is not required if you specify a DataSchemaUri { "version": "1.0", "recordAnnotationFieldName": "F1", "recordWeightFieldName": "F2", "targetFieldName": "F3", "dataFormat": "CSV", "dataFileContainsHeader": true, "variables": [ { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ], "excludedVariableNames": [ "F6" ] }
DataSource
- DataSource
object
: Represents the output of the GetDataSource operation. The content consists of the detailed metadata and data file information and the current status of the DataSource.- ComputeStatistics ComputeStatistics
- ComputeTime LongType
- CreatedAt EpochTime
- CreatedByIamUser AwsUserArn
- DataLocationS3 S3Url
- DataRearrangement DataRearrangement
- DataSizeInBytes LongType
- DataSourceId EntityId
- FinishedAt EpochTime
- LastUpdatedAt EpochTime
- Message Message
- Name EntityName
- NumberOfFiles LongType
- RDSMetadata RDSMetadata
- RedshiftMetadata RedshiftMetadata
- RoleARN RoleARN
- StartedAt EpochTime
- Status EntityStatus
DataSourceFilterVariable
- DataSourceFilterVariable
string
(values: CreatedAt, LastUpdatedAt, Status, Name, DataLocationS3, IAMUser): A list of the variables to use in searching or filtering DataSource. CreatedAt - Sets the search criteria to DataSource creation date. Status - Sets the search criteria to DataSource status. Name - Sets the search criteria to the contents of DataSource Name. DataUri - Sets the search criteria to the URI of data files used to create the DataSource. The URI can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory. IAMUser - Sets the search criteria to the user account that invoked the DataSource creation. Note The variable names should match the variable names in the DataSource.
DataSources
- DataSources
array
- items DataSource
DeleteBatchPredictionInput
- DeleteBatchPredictionInput
object
- BatchPredictionId required EntityId
DeleteBatchPredictionOutput
- DeleteBatchPredictionOutput
object
: Represents the output of a DeleteBatchPrediction operation. You can use the GetBatchPrediction operation and check the value of the Status parameter to see whether a BatchPrediction is marked as DELETED.- BatchPredictionId EntityId
DeleteDataSourceInput
- DeleteDataSourceInput
object
- DataSourceId required EntityId
DeleteDataSourceOutput
- DeleteDataSourceOutput
object
: Represents the output of a DeleteDataSource operation.- DataSourceId EntityId
DeleteEvaluationInput
- DeleteEvaluationInput
object
- EvaluationId required EntityId
DeleteEvaluationOutput
- DeleteEvaluationOutput
object
: Represents the output of a DeleteEvaluation operation. The output indicates that Amazon Machine Learning (Amazon ML) received the request. You can use the GetEvaluation operation and check the value of the Status parameter to see whether an Evaluation is marked as DELETED.- EvaluationId EntityId
DeleteMLModelInput
- DeleteMLModelInput
object
- MLModelId required EntityId
DeleteMLModelOutput
- DeleteMLModelOutput
object
: Represents the output of a DeleteMLModel operation. You can use the GetMLModel operation and check the value of the Status parameter to see whether an MLModel is marked as DELETED.- MLModelId EntityId
DeleteRealtimeEndpointInput
- DeleteRealtimeEndpointInput
object
- MLModelId required EntityId
DeleteRealtimeEndpointOutput
- DeleteRealtimeEndpointOutput
object
: Represents the output of an DeleteRealtimeEndpoint operation. The result contains the MLModelId and the endpoint information for the MLModel.- MLModelId EntityId
- RealtimeEndpointInfo RealtimeEndpointInfo
DeleteTagsInput
- DeleteTagsInput
object
- ResourceId required EntityId
- ResourceType required TaggableResourceType
- TagKeys required TagKeyList
DeleteTagsOutput
- DeleteTagsOutput
object
: Amazon ML returns the following elements.- ResourceId EntityId
- ResourceType TaggableResourceType
DescribeBatchPredictionsInput
- DescribeBatchPredictionsInput
object
- EQ ComparatorValue
- FilterVariable BatchPredictionFilterVariable
- GE ComparatorValue
- GT ComparatorValue
- LE ComparatorValue
- LT ComparatorValue
- Limit PageLimit
- NE ComparatorValue
- NextToken StringType
- Prefix ComparatorValue
- SortOrder SortOrder
DescribeBatchPredictionsOutput
- DescribeBatchPredictionsOutput
object
: Represents the output of a DescribeBatchPredictions operation. The content is essentially a list of BatchPredictions.- NextToken StringType
- Results BatchPredictions
DescribeDataSourcesInput
- DescribeDataSourcesInput
object
- EQ ComparatorValue
- FilterVariable DataSourceFilterVariable
- GE ComparatorValue
- GT ComparatorValue
- LE ComparatorValue
- LT ComparatorValue
- Limit PageLimit
- NE ComparatorValue
- NextToken StringType
- Prefix ComparatorValue
- SortOrder SortOrder
DescribeDataSourcesOutput
- DescribeDataSourcesOutput
object
: Represents the query results from a DescribeDataSources operation. The content is essentially a list of DataSource.- NextToken StringType
- Results DataSources
DescribeEvaluationsInput
- DescribeEvaluationsInput
object
- EQ ComparatorValue
- FilterVariable EvaluationFilterVariable
- GE ComparatorValue
- GT ComparatorValue
- LE ComparatorValue
- LT ComparatorValue
- Limit PageLimit
- NE ComparatorValue
- NextToken StringType
- Prefix ComparatorValue
- SortOrder SortOrder
DescribeEvaluationsOutput
- DescribeEvaluationsOutput
object
: Represents the query results from a DescribeEvaluations operation. The content is essentially a list of Evaluation.- NextToken StringType
- Results Evaluations
DescribeMLModelsInput
- DescribeMLModelsInput
object
- EQ ComparatorValue
- FilterVariable MLModelFilterVariable
- GE ComparatorValue
- GT ComparatorValue
- LE ComparatorValue
- LT ComparatorValue
- Limit PageLimit
- NE ComparatorValue
- NextToken StringType
- Prefix ComparatorValue
- SortOrder SortOrder
DescribeMLModelsOutput
- DescribeMLModelsOutput
object
: Represents the output of a DescribeMLModels operation. The content is essentially a list of MLModel.- NextToken StringType
- Results MLModels
DescribeTagsInput
- DescribeTagsInput
object
- ResourceId required EntityId
- ResourceType required TaggableResourceType
DescribeTagsOutput
- DescribeTagsOutput
object
: Amazon ML returns the following elements.- ResourceId EntityId
- ResourceType TaggableResourceType
- Tags TagList
DetailsAttributes
- DetailsAttributes
string
(values: PredictiveModelType, Algorithm): Contains the key values of DetailsMap: PredictiveModelType - Indicates the type of the MLModel. Algorithm - Indicates the algorithm that was used for the MLModel.
DetailsMap
- DetailsMap
array
: Provides any additional details regarding the prediction.- items
object
- key DetailsAttributes
- value DetailsValue
- items
DetailsValue
- DetailsValue
string
EDPPipelineId
- EDPPipelineId
string
EDPResourceRole
- EDPResourceRole
string
EDPSecurityGroupId
- EDPSecurityGroupId
string
EDPSecurityGroupIds
- EDPSecurityGroupIds
array
- items EDPSecurityGroupId
EDPServiceRole
- EDPServiceRole
string
EDPSubnetId
- EDPSubnetId
string
EntityId
- EntityId
string
EntityName
- EntityName
string
: A user-supplied name or description of the Amazon ML resource.
EntityStatus
- EntityStatus
string
(values: PENDING, INPROGRESS, FAILED, COMPLETED, DELETED): Object status with the following possible values: PENDING INPROGRESS FAILED COMPLETED DELETED
EpochTime
- EpochTime
string
: A timestamp represented in epoch time.
ErrorCode
- ErrorCode
integer
ErrorMessage
- ErrorMessage
string
Evaluation
- Evaluation
object
: Represents the output of GetEvaluation operation. The content consists of the detailed metadata and data file information and the current status of the Evaluation.- ComputeTime LongType
- CreatedAt EpochTime
- CreatedByIamUser AwsUserArn
- EvaluationDataSourceId EntityId
- EvaluationId EntityId
- FinishedAt EpochTime
- InputDataLocationS3 S3Url
- LastUpdatedAt EpochTime
- MLModelId EntityId
- Message Message
- Name EntityName
- PerformanceMetrics PerformanceMetrics
- StartedAt EpochTime
- Status EntityStatus
EvaluationFilterVariable
- EvaluationFilterVariable
string
(values: CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI): A list of the variables to use in searching or filtering Evaluation. CreatedAt - Sets the search criteria to Evaluation creation date. Status - Sets the search criteria to Evaluation status. Name - Sets the search criteria to the contents of Evaluation Name. IAMUser - Sets the search criteria to the user account that invoked an evaluation. MLModelId - Sets the search criteria to the Predictor that was evaluated. DataSourceId - Sets the search criteria to the DataSource used in evaluation. DataUri - Sets the search criteria to the data file(s) used in evaluation. The URL can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.
Evaluations
- Evaluations
array
- items Evaluation
GetBatchPredictionInput
- GetBatchPredictionInput
object
- BatchPredictionId required EntityId
GetBatchPredictionOutput
- GetBatchPredictionOutput
object
: Represents the output of a GetBatchPrediction operation and describes a BatchPrediction.- BatchPredictionDataSourceId EntityId
- BatchPredictionId EntityId
- ComputeTime LongType
- CreatedAt EpochTime
- CreatedByIamUser AwsUserArn
- FinishedAt EpochTime
- InputDataLocationS3 S3Url
- InvalidRecordCount LongType
- LastUpdatedAt EpochTime
- LogUri PresignedS3Url
- MLModelId EntityId
- Message Message
- Name EntityName
- OutputUri S3Url
- StartedAt EpochTime
- Status EntityStatus
- TotalRecordCount LongType
GetDataSourceInput
GetDataSourceOutput
- GetDataSourceOutput
object
: Represents the output of a GetDataSource operation and describes a DataSource.- ComputeStatistics ComputeStatistics
- ComputeTime LongType
- CreatedAt EpochTime
- CreatedByIamUser AwsUserArn
- DataLocationS3 S3Url
- DataRearrangement DataRearrangement
- DataSizeInBytes LongType
- DataSourceId EntityId
- DataSourceSchema DataSchema
- FinishedAt EpochTime
- LastUpdatedAt EpochTime
- LogUri PresignedS3Url
- Message Message
- Name EntityName
- NumberOfFiles LongType
- RDSMetadata RDSMetadata
- RedshiftMetadata RedshiftMetadata
- RoleARN RoleARN
- StartedAt EpochTime
- Status EntityStatus
GetEvaluationInput
- GetEvaluationInput
object
- EvaluationId required EntityId
GetEvaluationOutput
- GetEvaluationOutput
object
: Represents the output of a GetEvaluation operation and describes an Evaluation.- ComputeTime LongType
- CreatedAt EpochTime
- CreatedByIamUser AwsUserArn
- EvaluationDataSourceId EntityId
- EvaluationId EntityId
- FinishedAt EpochTime
- InputDataLocationS3 S3Url
- LastUpdatedAt EpochTime
- LogUri PresignedS3Url
- MLModelId EntityId
- Message Message
- Name EntityName
- PerformanceMetrics PerformanceMetrics
- StartedAt EpochTime
- Status EntityStatus
GetMLModelInput
GetMLModelOutput
- GetMLModelOutput
object
: Represents the output of a GetMLModel operation, and provides detailed information about a MLModel.- ComputeTime LongType
- CreatedAt EpochTime
- CreatedByIamUser AwsUserArn
- EndpointInfo RealtimeEndpointInfo
- FinishedAt EpochTime
- InputDataLocationS3 S3Url
- LastUpdatedAt EpochTime
- LogUri PresignedS3Url
- MLModelId EntityId
- MLModelType MLModelType
- Message Message
- Name MLModelName
- Recipe Recipe
- Schema DataSchema
- ScoreThreshold ScoreThreshold
- ScoreThresholdLastUpdatedAt EpochTime
- SizeInBytes LongType
- StartedAt EpochTime
- Status EntityStatus
- TrainingDataSourceId EntityId
- TrainingParameters TrainingParameters
IdempotentParameterMismatchException
- IdempotentParameterMismatchException
object
: A second request to use or change an object was not allowed. This can result from retrying a request using a parameter that was not present in the original request.- code ErrorCode
- message ErrorMessage
IntegerType
- IntegerType
integer
: Integer type that is a 32-bit signed number.
InternalServerException
- InternalServerException
object
: An error on the server occurred when trying to process a request.- code ErrorCode
- message ErrorMessage
InvalidInputException
- InvalidInputException
object
: An error on the client occurred. Typically, the cause is an invalid input value.- code ErrorCode
- message ErrorMessage
InvalidTagException
- InvalidTagException
object
- message ErrorMessage
Label
- Label
string
LimitExceededException
- LimitExceededException
object
: The subscriber exceeded the maximum number of operations. This exception can occur when listing objects such as DataSource.- code ErrorCode
- message ErrorMessage
LongType
- LongType
integer
: Long integer type that is a 64-bit signed number.
MLModel
- MLModel
object
: Represents the output of a GetMLModel operation. The content consists of the detailed metadata and the current status of the MLModel.- Algorithm Algorithm
- ComputeTime LongType
- CreatedAt EpochTime
- CreatedByIamUser AwsUserArn
- EndpointInfo RealtimeEndpointInfo
- FinishedAt EpochTime
- InputDataLocationS3 S3Url
- LastUpdatedAt EpochTime
- MLModelId EntityId
- MLModelType MLModelType
- Message Message
- Name MLModelName
- ScoreThreshold ScoreThreshold
- ScoreThresholdLastUpdatedAt EpochTime
- SizeInBytes LongType
- StartedAt EpochTime
- Status EntityStatus
- TrainingDataSourceId EntityId
- TrainingParameters TrainingParameters
MLModelFilterVariable
- MLModelFilterVariable
string
(values: CreatedAt, LastUpdatedAt, Status, Name, IAMUser, TrainingDataSourceId, RealtimeEndpointStatus, MLModelType, Algorithm, TrainingDataURI)
MLModelName
- MLModelName
string
MLModelType
- MLModelType
string
(values: REGRESSION, BINARY, MULTICLASS)
MLModels
- MLModels
array
- items MLModel
Message
- Message
string
: Description of the most recent details about an object.
PageLimit
- PageLimit
integer
PerformanceMetrics
- PerformanceMetrics
object
: Measurements of how well the MLModel performed on known observations. One of the following metrics is returned, based on the type of the MLModel: BinaryAUC: The binary MLModel uses the Area Under the Curve (AUC) technique to measure performance. RegressionRMSE: The regression MLModel uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable. MulticlassAvgFScore: The multiclass MLModel uses the F1 score technique to measure performance. For more information about performance metrics, please see the Amazon Machine Learning Developer Guide.- Properties PerformanceMetricsProperties
PerformanceMetricsProperties
- PerformanceMetricsProperties
array
- items
object
- items
PerformanceMetricsPropertyKey
- PerformanceMetricsPropertyKey
string
PerformanceMetricsPropertyValue
- PerformanceMetricsPropertyValue
string
PredictInput
PredictOutput
- PredictOutput
object
- Prediction Prediction
Prediction
- Prediction
object
: The output from a Predict operation: Details - Contains the following attributes: DetailsAttributes.PREDICTIVE_MODEL_TYPE - REGRESSION | BINARY | MULTICLASS DetailsAttributes.ALGORITHM - SGD PredictedLabel - Present for either a BINARY or MULTICLASS MLModel request. PredictedScores - Contains the raw classification score corresponding to each label. PredictedValue - Present for a REGRESSION MLModel request.- details DetailsMap
- predictedLabel Label
- predictedScores ScoreValuePerLabelMap
- predictedValue floatLabel
PredictorNotMountedException
- PredictorNotMountedException
object
: The exception is thrown when a predict request is made to an unmounted MLModel.- message ErrorMessage
PresignedS3Url
- PresignedS3Url
string
RDSDataSpec
- RDSDataSpec
object
: The data specification of an Amazon Relational Database Service (Amazon RDS) DataSource.- DataRearrangement DataRearrangement
- DataSchema DataSchema
- DataSchemaUri S3Url
- DatabaseCredentials required RDSDatabaseCredentials
- DatabaseInformation required RDSDatabase
- ResourceRole required EDPResourceRole
- S3StagingLocation required S3Url
- SecurityGroupIds required EDPSecurityGroupIds
- SelectSqlQuery required RDSSelectSqlQuery
- ServiceRole required EDPServiceRole
- SubnetId required EDPSubnetId
RDSDatabase
- RDSDatabase
object
: The database details of an Amazon RDS database.- DatabaseName required RDSDatabaseName
- InstanceIdentifier required RDSInstanceIdentifier
RDSDatabaseCredentials
- RDSDatabaseCredentials
object
: The database credentials to connect to a database on an RDS DB instance.- Password required RDSDatabasePassword
- Username required RDSDatabaseUsername
RDSDatabaseName
- RDSDatabaseName
string
: The name of a database hosted on an RDS DB instance.
RDSDatabasePassword
- RDSDatabasePassword
string
: The password to be used by Amazon ML to connect to a database on an RDS DB instance. The password should have sufficient permissions to execute the RDSSelectQuery query.
RDSDatabaseUsername
- RDSDatabaseUsername
string
: The username to be used by Amazon ML to connect to database on an Amazon RDS instance. The username should have sufficient permissions to execute an RDSSelectSqlQuery query.
RDSInstanceIdentifier
- RDSInstanceIdentifier
string
: Identifier of RDS DB Instances.
RDSMetadata
- RDSMetadata
object
: The datasource details that are specific to Amazon RDS.- DataPipelineId EDPPipelineId
- Database RDSDatabase
- DatabaseUserName RDSDatabaseUsername
- ResourceRole EDPResourceRole
- SelectSqlQuery RDSSelectSqlQuery
- ServiceRole EDPServiceRole
RDSSelectSqlQuery
- RDSSelectSqlQuery
string
: The SQL query to be executed against the Amazon RDS database. The SQL query should be valid for the Amazon RDS type being used.
RealtimeEndpointInfo
- RealtimeEndpointInfo
object
: Describes the real-time endpoint information for an MLModel.- CreatedAt EpochTime
- EndpointStatus RealtimeEndpointStatus
- EndpointUrl VipURL
- PeakRequestsPerSecond IntegerType
RealtimeEndpointStatus
- RealtimeEndpointStatus
string
(values: NONE, READY, UPDATING, FAILED)
Recipe
- Recipe
string
Record
- Record
array
: A map of variable name-value pairs that represent an observation.- items
object
- key VariableName
- value VariableValue
- items
RedshiftClusterIdentifier
- RedshiftClusterIdentifier
string
: The ID of an Amazon Redshift cluster.
RedshiftDataSpec
- RedshiftDataSpec
object
: Describes the data specification of an Amazon Redshift DataSource.- DataRearrangement DataRearrangement
- DataSchema DataSchema
- DataSchemaUri S3Url
- DatabaseCredentials required RedshiftDatabaseCredentials
- DatabaseInformation required RedshiftDatabase
- S3StagingLocation required S3Url
- SelectSqlQuery required RedshiftSelectSqlQuery
RedshiftDatabase
- RedshiftDatabase
object
: Describes the database details required to connect to an Amazon Redshift database.- ClusterIdentifier required RedshiftClusterIdentifier
- DatabaseName required RedshiftDatabaseName
RedshiftDatabaseCredentials
- RedshiftDatabaseCredentials
object
: Describes the database credentials for connecting to a database on an Amazon Redshift cluster.- Password required RedshiftDatabasePassword
- Username required RedshiftDatabaseUsername
RedshiftDatabaseName
- RedshiftDatabaseName
string
: The name of a database hosted on an Amazon Redshift cluster.
RedshiftDatabasePassword
- RedshiftDatabasePassword
string
: A password to be used by Amazon ML to connect to a database on an Amazon Redshift cluster. The password should have sufficient permissions to execute a RedshiftSelectSqlQuery query. The password should be valid for an Amazon Redshift USER.
RedshiftDatabaseUsername
- RedshiftDatabaseUsername
string
: A username to be used by Amazon Machine Learning (Amazon ML)to connect to a database on an Amazon Redshift cluster. The username should have sufficient permissions to execute the RedshiftSelectSqlQuery query. The username should be valid for an Amazon Redshift USER.
RedshiftMetadata
- RedshiftMetadata
object
: Describes the DataSource details specific to Amazon Redshift.- DatabaseUserName RedshiftDatabaseUsername
- RedshiftDatabase RedshiftDatabase
- SelectSqlQuery RedshiftSelectSqlQuery
RedshiftSelectSqlQuery
- RedshiftSelectSqlQuery
string
: Describes the SQL query to execute on the Amazon Redshift database. The SQL query should be valid for an Amazon Redshift SELECT.
ResourceNotFoundException
- ResourceNotFoundException
object
: A specified resource cannot be located.- code ErrorCode
- message ErrorMessage
RoleARN
- RoleARN
string
: The Amazon Resource Name (ARN) of an AWS IAM Role, such as the following: arn:aws:iam::account:role/rolename.
S3DataSpec
- S3DataSpec
object
: Describes the data specification of a DataSource.- DataLocationS3 required S3Url
- DataRearrangement DataRearrangement
- DataSchema DataSchema
- DataSchemaLocationS3 S3Url
S3Url
- S3Url
string
: A reference to a file or bucket on Amazon Simple Storage Service (Amazon S3).
ScoreThreshold
- ScoreThreshold
number
ScoreValue
- ScoreValue
number
ScoreValuePerLabelMap
- ScoreValuePerLabelMap
array
: Provides the raw classification score corresponding to each label.- items
object
- key Label
- value ScoreValue
- items
SortOrder
- SortOrder
string
(values: asc, dsc): The sort order specified in a listing condition. Possible values include the following: asc - Present the information in ascending order (from A-Z). dsc - Present the information in descending order (from Z-A).
StringType
- StringType
string
: String type.
Tag
- Tag
object
: A custom key-value pair associated with an ML object, such as an ML model.
TagKey
- TagKey
string
TagKeyList
- TagKeyList
array
- items TagKey
TagLimitExceededException
- TagLimitExceededException
object
- message ErrorMessage
TagList
- TagList
array
- items Tag
TagValue
- TagValue
string
TaggableResourceType
- TaggableResourceType
string
(values: BatchPrediction, DataSource, Evaluation, MLModel)
TrainingParameters
- TrainingParameters
array
- items
object
- key StringType
- value StringType
- items
UpdateBatchPredictionInput
- UpdateBatchPredictionInput
object
- BatchPredictionId required EntityId
- BatchPredictionName required EntityName
UpdateBatchPredictionOutput
- UpdateBatchPredictionOutput
object
: Represents the output of an UpdateBatchPrediction operation. You can see the updated content by using the GetBatchPrediction operation.- BatchPredictionId EntityId
UpdateDataSourceInput
- UpdateDataSourceInput
object
- DataSourceId required EntityId
- DataSourceName required EntityName
UpdateDataSourceOutput
- UpdateDataSourceOutput
object
: Represents the output of an UpdateDataSource operation. You can see the updated content by using the GetBatchPrediction operation.- DataSourceId EntityId
UpdateEvaluationInput
- UpdateEvaluationInput
object
- EvaluationId required EntityId
- EvaluationName required EntityName
UpdateEvaluationOutput
- UpdateEvaluationOutput
object
: Represents the output of an UpdateEvaluation operation. You can see the updated content by using the GetEvaluation operation.- EvaluationId EntityId
UpdateMLModelInput
- UpdateMLModelInput
object
- MLModelId required EntityId
- MLModelName EntityName
- ScoreThreshold ScoreThreshold
UpdateMLModelOutput
- UpdateMLModelOutput
object
: Represents the output of an UpdateMLModel operation. You can see the updated content by using the GetMLModel operation.- MLModelId EntityId
VariableName
- VariableName
string
: The name of a variable. Currently it's used to specify the name of the target value, label, weight, and tags.
VariableValue
- VariableValue
string
: The value of a variable. Currently it's used to specify values of the target value, weights, and tag variables and for filtering variable values.
Verbose
- Verbose
boolean
: Specifies whether a describe operation should return exhaustive or abbreviated information.
VipURL
- VipURL
string
floatLabel
- floatLabel
number