@dannadori/googlemeet-segmentation-worker-js
v1.0.30
Published
![image](https://user-images.githubusercontent.com/48346627/104487132-0b101180-5610-11eb-8182-b1be3470c9c9.png)
Downloads
56
Maintainers
Readme
Google meet person segmentation
Install
## install
$ npm install @dannadori/googlemeet-segmentation-worker-js
$ cp node_modules/@dannadori/googlemeet-segmentation-worker-js/dist/googlemeet-segmentation-worker-worker.js public/
$ cp node_modules/\@tensorflow/tfjs-backend-wasm/dist/tfjs-backend-wasm.wasm public/
## download model
$ mkdir public/google-segmentation
$ # curl https://flect-lab-web.s3-us-west-2.amazonaws.com/googlemeet/googlemeet-segmentation_128_32/model.json > public/google-segmentation/model.json
$ # curl https://flect-lab-web.s3-us-west-2.amazonaws.com/googlemeet/googlemeet-segmentation_128_32/group1-shard1of1.bin > public/google-segmentation/group1-shard1of1.bin
Temporary, the model files are not available from above URL. Please get them from web.
API
export declare const generateGoogleMeetSegmentationDefaultConfig: () => GoogleMeetSegmentationConfig;
export declare const generateDefaultGoogleMeetSegmentationParams: () => GoogleMeetSegmentationOperationParams;
export declare const createForegroundImage: (srcCanvas: HTMLCanvasElement, prediction: number[][][]) => ImageD
export declare class GoogleMeetSegmentationWorkerManager {
init(config: GoogleMeetSegmentationConfig | null): Promise<void>;
predict(targetCanvas: HTMLCanvasElement, params?: GoogleMeetSegmentationOperationParams): Promise<number[][]>;
}
Configuration and Parameter
export interface GoogleMeetSegmentationConfig{
browserType : BrowserType
processOnLocal : boolean
useTFWasmBackend : boolean
wasmPath : string
modelPath : string
workerPath : string
}
export interface GoogleMeetSegmentationOperationParams{
type : GoogleMeetSegmentationFunctionType
processWidth : number
processHeight : number
smoothingS : number
smoothingR : number
jbfWidth : number
jbfHeight : number
staticMemory : boolean
lightWrapping : boolean
smoothingType : GoogleMeetSegmentationSmoothingType
originalWidth : number
originalHeight : number
}
export enum GoogleMeetSegmentationFunctionType{
Segmentation,
xxx, // Not implemented
}
export enum GoogleMeetSegmentationSmoothingType{
GPU,
JS,
WASM,
JS_CANVAS,
}
Step by step
Create environment and install package
$ npx create-react-app 011demo_googlemeet-segmentation-worker-js-demo3 --template typescript
$ cd demo/
$ npm install
$ npm install @dannadori/googlemeet-segmentation-worker-js
$ cp node_modules/@dannadori/googlemeet-segmentation-worker-js/dist/googlemeet-segmentation-worker-worker.js public/
Download Model
$ mkdir public/google-segmentation
$ curl https://flect-lab-web.s3-us-west-2.amazonaws.com/googlemeet-segmentation_128_32/model.json > public/google-segmentation/model.json
$ curl https://flect-lab-web.s3-us-west-2.amazonaws.com/googlemeet-segmentation_128_32/group1-shard1of1.bin > public/google-segmentation/group1-shard1of1.bin
Add source image to public.
In this time, the name is "srcImage.jpg"
Edit src/App.tsx
Sample code is here.
import React from 'react';
import './App.css';
import { createForegroundImage, generateDefaultGoogleMeetSegmentationParams, generateGoogleMeetSegmentationDefaultConfig, GoogleMeetSegmentationWorkerManager } from '@dannadori/googlemeet-segmentation-worker-js'
class App extends React.Component{
manager = new GoogleMeetSegmentationWorkerManager()
config = (()=>{
const c = generateGoogleMeetSegmentationDefaultConfig()
c.useTFWasmBackend = false
c.wasmPath = ""
c.modelPath="/google-segmentation/model.json"
c.processOnLocal=true
return c
})()
params = (()=>{
const p = generateDefaultGoogleMeetSegmentationParams()
p.processHeight=128
p.processWidth=128
return p
})()
srcCanvas = document.createElement("canvas")
dstCanvas = document.createElement("canvas")
componentDidMount = () =>{
document.getRootNode().lastChild!.appendChild(this.srcCanvas)
document.getRootNode().lastChild!.appendChild(this.dstCanvas)
const srcImage = document.createElement("img")
srcImage.onload = () =>{
this.manager.init(this.config).then(()=>{
this.srcCanvas.getContext("2d")!.drawImage(
srcImage, 0, 0, this.srcCanvas.width, this.dstCanvas.height)
return this.manager.predict(this.srcCanvas, this.params)
}).then((res)=>{
if(res){
console.log("res is good")
const foreground = createForegroundImage(this.srcCanvas, res)
this.dstCanvas.getContext("2d")!.putImageData(foreground, 0, 0)
this.srcCanvas.getContext("2d")!.drawImage(this.dstCanvas, 0, 0, this.srcCanvas.width, this.srcCanvas.height)
}else{
console.log("res is not")
}
})
}
srcImage.src = "./srcImage.jpg"
}
render = ()=>{
return (
<div className="App">
</div>
);
}
}
export default App;
build and start
$ npm run start