npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@cutii/simple-peer

v8.1.0

Published

Simple one-to-one WebRTC video/voice and data channels

Downloads

3

Readme

simple-peer travis npm downloads javascript style guide

Simple WebRTC video/voice and data channels.

Sauce Test Status

features

  • concise, node.js style API for WebRTC
  • works in node and the browser!
  • supports video/voice streams
  • supports data channel
  • supports advanced options like:

This module works in the browser with browserify.

Note: If you're NOT using browserify, then use the included standalone file simplepeer.min.js. This exports a SimplePeer constructor on window.

install

npm install simple-peer

usage

Let's create an html page that lets you manually connect two peers:

<html>
  <body>
    <style>
      #outgoing {
        width: 600px;
        word-wrap: break-word;
      }
    </style>
    <form>
      <textarea id="incoming"></textarea>
      <button type="submit">submit</button>
    </form>
    <pre id="outgoing"></pre>
    <script src="bundle.js"></script>
  </body>
</html>
var Peer = require('simple-peer')
var p = new Peer({ initiator: location.hash === '#1', trickle: false })

p.on('error', function (err) { console.log('error', err) })

p.on('signal', function (data) {
  console.log('SIGNAL', JSON.stringify(data))
  document.querySelector('#outgoing').textContent = JSON.stringify(data)
})

document.querySelector('form').addEventListener('submit', function (ev) {
  ev.preventDefault()
  p.signal(JSON.parse(document.querySelector('#incoming').value))
})

p.on('connect', function () {
  console.log('CONNECT')
  p.send('whatever' + Math.random())
})

p.on('data', function (data) {
  console.log('data: ' + data)
})

Visit index.html#1 from one browser (the initiator) and index.html from another browser (the receiver).

An "offer" will be generated by the initiator. Paste this into the receiver's form and hit submit. The receiver generates an "answer". Paste this into the initiator's form and hit submit.

Now you have a direct P2P connection between two browsers!

A simpler example

This example create two peers in the same web page.

In a real-world application, you would never do this. The sender and receiver Peer instances would exist in separate browsers. A "signaling server" (usually implemented with websockets) would be used to exchange signaling data between the two browsers until a peer-to-peer connection is established.

data channels

var SimplePeer = require('simple-peer')

var peer1 = new SimplePeer({ initiator: true })
var peer2 = new SimplePeer()

peer1.on('signal', function (data) {
  // when peer1 has signaling data, give it to peer2 somehow
  peer2.signal(data)
})

peer2.on('signal', function (data) {
  // when peer2 has signaling data, give it to peer1 somehow
  peer1.signal(data)
})

peer1.on('connect', function () {
  // wait for 'connect' event before using the data channel
  peer1.send('hey peer2, how is it going?')
})

peer2.on('data', function (data) {
  // got a data channel message
  console.log('got a message from peer1: ' + data)
})

video/voice

Video/voice is also super simple! In this example, peer1 sends video to peer2.

var SimplePeer = require('simple-peer')

// get video/voice stream
navigator.getUserMedia({ video: true, audio: true }, gotMedia, function () {})

function gotMedia (stream) {
  var peer1 = new SimplePeer({ initiator: true, stream: stream })
  var peer2 = new SimplePeer()

  peer1.on('signal', function (data) {
    peer2.signal(data)
  })

  peer2.on('signal', function (data) {
    peer1.signal(data)
  })

  peer2.on('stream', function (stream) {
    // got remote video stream, now let's show it in a video tag
    var video = document.querySelector('video')
    video.src = window.URL.createObjectURL(stream)
    video.play()
  })
}

For two-way video, simply pass a stream option into both Peer constructors. Simple!

in node

To use this library in node, pass in opts.wrtc as a parameter:

var SimplePeer = require('simple-peer')
var wrtc = require('wrtc')

var peer1 = new SimplePeer({ initiator: true, wrtc: wrtc })
var peer2 = new SimplePeer({ wrtc: wrtc })

Who is using simple-peer?

  • Friends - Peer-to-peer chat powered by the web
  • ScreenCat - Screen sharing + remote collaboration app
  • Socket.io-p2p - Official Socket.io P2P communication library
  • WebTorrent - Streaming torrent client in the browser
  • Instant.io - Secure, anonymous, streaming file transfer
  • WebCat - P2P pipe across the web using Github private/public key for auth
  • RTCCat - WebRTC netcat
  • PeerNet - Peer-to-peer gossip network using randomized algorithms
  • PusherTC - Video chat with using Pusher. See guide.
  • lxjs-chat - Omegle-like video chat site
  • Whiteboard - P2P Whiteboard powered by WebRTC and WebTorrent
  • Peer Calls - WebRTC group video calling. Create a room. Share the link.
  • Netsix - Send videos to your friends using WebRTC so that they can watch them right away.
  • Your app here! - send a PR!

api

peer = new SimplePeer([opts])

Create a new WebRTC peer connection.

A "data channel" for text/binary communication is always established, because it's cheap and often useful. For video/voice communication, pass the stream option.

If opts is specified, then the default options (shown below) will be overridden.

{
  initiator: false,
  channelConfig: {},
  channelName: '<random string>',
  config: { iceServers: [ { url: 'stun:stun.l.google.com:19302' } ] },
  constraints: {},
  offerConstraints: {},
  answerConstraints: {},
  reconnectTimer: false,
  sdpTransform: function (sdp) { return sdp },
  stream: false,
  trickle: true,
  wrtc: {}, // RTCPeerConnection/RTCSessionDescription/RTCIceCandidate
  objectMode: false
}

The options do the following:

  • initiator - set to true if this is the initiating peer
  • channelConfig - custom webrtc data channel configuration (used by createDataChannel)
  • channelName - custom webrtc data channel name
  • config - custom webrtc configuration (used by RTCPeerConnection constructor)
  • constraints - custom webrtc video/voice constraints (used by RTCPeerConnection constructor)
  • offerConstraints - custom offer constraints (used by createOffer method)
  • answerConstraints - custom answer constraints (used by createAnswer method)
  • reconnectTimer - wait __ milliseconds after ICE 'disconnect' for reconnect attempt before emitting 'close'
  • sdpTransform - function to transform the generated SDP signaling data (for advanced users)
  • stream - if video/voice is desired, pass stream returned from getUserMedia
  • trickle - set to false to disable trickle ICE and get a single 'signal' event (slower)
  • wrtc - custom webrtc implementation, mainly useful in node to specify in the wrtc package
  • objectMode - set to true to create the stream in Object Mode. In this mode, incoming string data is not automatically converted to Buffer objets.

peer.signal(data)

Call this method whenever the remote peer emits a peer.on('signal') event.

The data will encapsulate a webrtc offer, answer, or ice candidate. These messages help the peers to eventually establish a direct connection to each other. The contents of these strings are an implementation detail that can be ignored by the user of this module; simply pass the data from 'signal' events to the remote peer and call peer.signal(data) to get connected.

peer.send(data)

Send text/binary data to the remote peer. data can be any of several types: String, Buffer (see buffer), TypedArrayView (Uint8Array, etc.), ArrayBuffer, or Blob (in browsers that support it).

Note: If this method is called before the peer.on('connect') event has fired, then data will be buffered.

peer.destroy([onclose])

Destroy and cleanup this peer connection.

If the optional onclose parameter is passed, then it will be registered as a listener on the 'close' event.

Peer.WEBRTC_SUPPORT

Detect native WebRTC support in the javascript environment.

var Peer = require('simple-peer')

if (Peer.WEBRTC_SUPPORT) {
  // webrtc support!
} else {
  // fallback
}

duplex stream

Peer objects are instances of stream.Duplex. The behave very similarly to a net.Socket from the node core net module. The duplex stream reads/writes to the data channel.

var peer = new Peer(opts)
// ... signaling ...
peer.write(new Buffer('hey'))
peer.on('data', function (chunk) {
  console.log('got a chunk', chunk)
})

events

peer.on('signal', function (data) {})

Fired when the peer wants to send signaling data to the remote peer.

It is the responsibility of the application developer (that's you!) to get this data to the other peer. This usually entails using a websocket signaling server. This data is an Object, so remember to call JSON.stringify(data) to serialize it first. Then, simply call peer.signal(data) on the remote peer.

(Be sure to listen to this event immediately to avoid missing it. For initiator: true peers, it fires right away. For initatior: false peers, it fires when the remote offer is received.)

peer.on('connect', function () {})

Fired when the peer connection and data channel are ready to use.

peer.on('data', function (data) {})

Received a message from the remote peer (via the data channel). JSON strings will be parsed and the resulting Object emitted.

data will be either a String or a Buffer/Uint8Array (see buffer).

peer.on('stream', function (stream) {})

Received a remote video stream, which can be displayed in a video tag:

peer.on('stream', function (stream) {
  var video = document.createElement('video')
  video.src = window.URL.createObjectURL(stream)
  document.body.appendChild(video)
  video.play()
})

peer.on('close', function () {})

Called when the peer connection has closed.

peer.on('error', function (err) {})

Fired when a fatal error occurs. Usually, this means bad signaling data was received from the remote peer.

err is an Error object.

connecting more than 2 peers?

The simplest way to do that is to create a full-mesh topology. That means that every peer opens a connection to every other peer. To illustrate:

full mesh topology

To broadcast a message, just iterate over all the peers and call peer.send.

So, say you have 3 peers. Then, when a peer wants to send some data it must send it 2 times, once to each of the other peers. So you're going to want to be a bit careful about the size of the data you send.

Full mesh topologies don't scale well when the number of peers is very large. The total number of edges in the network will be full mesh formula where n is the number of peers.

For clarity, here is the code to connect 3 peers together:

Peer 1

// These are peer1's connections to peer2 and peer3
var peer2 = new SimplePeer({ initiator: true })
var peer3 = new SimplePeer({ initiator: true })

peer2.on('signal', function (data) {
  // send this signaling data to peer2 somehow
})

peer2.on('connect', function () {
  peer2.send('hi peer2, this is peer1')
})

peer2.on('data', function (data) {
  console.log('got a message from peer2: ' + data)
})

peer3.on('signal', function (data) {
  // send this signaling data to peer3 somehow
})

peer3.on('connect', function () {
  peer3.send('hi peer3, this is peer1')
})

peer3.on('data', function (data) {
  console.log('got a message from peer3: ' + data)
})

Peer 2

// These are peer2's connections to peer1 and peer3
var peer1 = new SimplePeer()
var peer3 = new SimplePeer({ initiator: true })

peer1.on('signal', function (data) {
  // send this signaling data to peer1 somehow
})

peer1.on('connect', function () {
  peer1.send('hi peer1, this is peer2')
})

peer1.on('data', function (data) {
  console.log('got a message from peer1: ' + data)
})

peer3.on('signal', function (data) {
  // send this signaling data to peer3 somehow
})

peer3.on('connect', function () {
  peer3.send('hi peer3, this is peer2')
})

peer3.on('data', function (data) {
  console.log('got a message from peer3: ' + data)
})

Peer 3

// These are peer3's connections to peer1 and peer2
var peer1 = new SimplePeer()
var peer2 = new SimplePeer()

peer1.on('signal', function (data) {
  // send this signaling data to peer1 somehow
})

peer1.on('connect', function () {
  peer1.send('hi peer1, this is peer3')
})

peer1.on('data', function (data) {
  console.log('got a message from peer1: ' + data)
})

peer2.on('signal', function (data) {
  // send this signaling data to peer2 somehow
})

peer2.on('connect', function () {
  peer2.send('hi peer2, this is peer3')
})

peer2.on('data', function (data) {
  console.log('got a message from peer2: ' + data)
})

memory usage

If you call peer.send(buf), simple-peer is not keeping a reference to buf and sending the buffer at some later point in time. We immediately call channel.send() on the data channel. So it should be fine to mutate the buffer right afterward.

However, beware that peer.write(buf) (a writable stream method) does not have the same contract. It will potentially buffer the data and call channel.send() at a future point in time, so definitely don't assume it's safe to mutate the buffer.

connection does not work on some networks?

If a direct connection fails, in particular, because of NAT traversal and/or firewalls, WebRTC ICE uses an intermediary (relay) TURN server. In other words, ICE will first use STUN with UDP to directly connect peers and, if that fails, will fall back to a TURN relay server.

In order to use a TURN server, you must specify the config option to the SimplePeer constructor. See the API docs above.

js-standard-style

license

MIT. Copyright (c) Feross Aboukhadijeh.