@csv-streamy/lib
v1.0.7
Published
CSV Stream Library for Node.js.
Downloads
1
Readme
@csv-streamy/lib
CSV Streamy Lib - CSV Stream library for Node.js.
Install
npm i @csv-streamy/lib
Quick examples
Read and Write your CSV file
import { resolve } from 'path'
import { pipeline } from 'stream/promises'
import { createReadStream, createWriteStream } from 'fs'
import { createCsvParser, createCsvConverter, CsvRowData } from '@csv-streamy/lib'
// For example, it just converts all fields to uppercase letters.
async function processRow({ data }: CsvRowData): Promise<CsvRowData> {
for (const [header, field] of Object.entries(data)) {
data[header] = field.toUpperCase()
}
return Promise.resolve({ data })
}
async function run() {
await pipeline(
createReadStream(resolve(__dirname, 'input.csv'), { encoding: 'utf-8' }),
createCsvParser({ hasHeaders: true, hasDoubleQuotes: true }),
async function* (source) {
for await (const row of source) {
yield await processRow(row as CsvRowData)
}
},
createCsvConverter({ hasHeaders: true, hasDoubleQuotes: true }),
createWriteStream(resolve(__dirname, 'output.csv'), { encoding: 'utf-8' }),
)
console.log('Woo-hoo! Succeeded!!')
}
run().catch(console.error)
Read and Write your CSV file with stat
import { resolve } from 'path'
import { pipeline } from 'stream/promises'
import { createReadStream, createWriteStream } from 'fs'
import { createCsvParser, createCsvConverter, CsvRowData } from '@csv-streamy/lib'
// You can observe the number of row as `count` and the bytes of data as `amount` in `stat`.
// For example, it converts all fields to uppercase letters if `count` is even
// or it capitalizes all fields if `amount` is 200 bytes or more.
async function processRow({ data, stat }: CsvRowData): Promise<CsvRowData> {
const { count, amount } = { ...stat }
if (!!count && count % 2 === 0) {
for (const [header, field] of Object.entries(data)) {
data[header] = field.toUpperCase()
}
} else if (!!amount && amount >= 200) {
for (const [header, field] of Object.entries(data)) {
data[header] = field.charAt(0).toUpperCase() + field.slice(1)
}
}
return Promise.resolve({ data })
}
async function run() {
await pipeline(
createReadStream(resolve(__dirname, 'input.csv'), { encoding: 'utf-8' }),
createCsvParser({ hasHeaders: true, hasDoubleQuotes: true }),
async function* (source) {
for await (const row of source) {
yield await processRow(row as CsvRowData)
}
},
createCsvConverter({ hasHeaders: true, hasDoubleQuotes: true }),
createWriteStream(resolve(__dirname, 'output.csv'), { encoding: 'utf-8' }),
)
console.log('Great! Perfect!!')
}
run().catch(console.error)
Using ES Modules (ESM)
If you want to use ES Modules, you can do it as follows.
import { resolve } from 'path'
import { dirname } from 'dirfilename'
import { pipeline } from 'stream/promises'
import { createReadStream, createWriteStream } from 'fs'
import { createCsvParser, createCsvConverter, CsvRowData } from '@csv-streamy/lib'
// Workaround to simply use `__dirname` because CommonJS variables are not available in ES modules.
const __dirname = dirname(import.meta.url)
async function processRow({ data }: CsvRowData): Promise<CsvRowData> {
for (const [header, field] of Object.entries(data)) {
data[header] = field.toUpperCase()
}
return Promise.resolve({ data })
}
async function run() {
await pipeline(
createReadStream(resolve(__dirname, 'input.csv'), { encoding: 'utf-8' }),
createCsvParser({ hasHeaders: true, hasDoubleQuotes: true }),
async function* (source) {
for await (const row of source) {
yield await processRow(row as CsvRowData)
}
},
createCsvConverter({ hasHeaders: true, hasDoubleQuotes: true }),
createWriteStream(resolve(__dirname, 'output.csv'), { encoding: 'utf-8' }),
)
console.log('Woo-hoo! Succeeded!!')
}
run().catch(console.error)
Using CommonJS
If you want to use CommonJS in just Node.js, you can do it as follows.
const { resolve } = require('path')
const { pipeline } = require('stream/promises')
const { createReadStream, createWriteStream } = require('fs')
const { createCsvParser, createCsvConverter } = require('@csv-streamy/lib')
async function processRow({ data }) {
for (const [header, field] of Object.entries(data)) {
data[header] = field.toUpperCase()
}
return Promise.resolve({ data })
}
async function run() {
await pipeline(
createReadStream(resolve(__dirname, 'input.csv'), { encoding: 'utf-8' }),
createCsvParser({ hasHeaders: true, hasDoubleQuotes: true }),
async function* (source) {
for await (const row of source) {
yield await processRow(row)
}
},
createCsvConverter({ hasHeaders: true, hasDoubleQuotes: true }),
createWriteStream(resolve(__dirname, 'output.csv'), { encoding: 'utf-8' })
);
console.log('Woo-hoo! Succeeded!!')
}
run().catch(console.error)
Usage
Parsing
You can parse your csv file, which can contain headers and enclose fields in double-quotes, to handy objects.
Each object contains fields per row as data
and statistics data as stat
, which contains the number of row as count
and the bytes of data as amount
.
import { resolve } from 'path'
import { createReadStream } from 'fs'
import { createCsvParser } from '@csv-streamy/lib'
const reader = createReadStream(resolve(__dirname, 'input.csv'))
const parser = createCsvParser({ hasHeaders: true, hasDoubleQuotes: true })
reader
.pipe(parser)
.on('error', (error) => console.log(error))
.on('data', (row) => console.log(row))
.on('end', () => console.log('End'))
- Input
"header[1]","header[2]","header[3]","header[4]","header[5]"
"item[1][1]","item[1][2]","item[1][3]","item[1][4]","item[1][5]"
"item[2][1]","item[2][2]","item[2][3]","item[2][4]","item[2][5]"
- Output
{
data: {
'header[1]': 'item[1][1]',
'header[2]': 'item[1][2]',
'header[3]': 'item[1][3]',
'header[4]': 'item[1][4]',
'header[5]': 'item[1][5]'
},
stat: { count: 1, amount: 64 }
}
{
data: {
'header[1]': 'item[2][1]',
'header[2]': 'item[2][2]',
'header[3]': 'item[2][3]',
'header[4]': 'item[2][4]',
'header[5]': 'item[2][5]'
},
stat: { count: 2, amount: 128 }
}
End
Converting
You can convert your handy objects with data
to csv format strings, which can contain headers and enclose fields in double-quotes, then create buffer stream.
import { createCsvConverter } from '@csv-streamy/lib'
const converter = createCsvConverter({ hasHeaders: true, hasDoubleQuotes: true })
converter.pipe(process.stdout).on('end', () => process.exit())
converter.write({ data: { 'header[1]': 'item[1][1]', 'header[2]': 'item[1][2]', 'header[3]': 'item[1][3]' } })
converter.write({ data: { 'header[1]': 'item[2][1]', 'header[2]': 'item[2][2]', 'header[3]': 'item[2][3]' } })
converter.write({ data: { 'header[1]': 'item[3][1]', 'header[2]': 'item[3][2]', 'header[3]': 'item[3][3]' } })
converter.end()
- Output
"header[1]","header[2]","header[3]"
"item[1][1]","item[1][2]","item[1][3]"
"item[2][1]","item[2][2]","item[2][3]"
"item[3][1]","item[3][2]","item[3][3]"
Of course, you can export them to a file.
import { resolve } from 'path'
import { createWriteStream } from 'fs'
import { createCsvConverter } from '@csv-streamy/lib'
const converter = createCsvConverter({ hasHeaders: true, hasDoubleQuotes: true })
const writer = createWriteStream(resolve(__dirname, 'output.csv'))
converter.pipe(writer).on('end', () => writer.end())
converter.write({ data: { 'header[1]': 'item[1][1]', 'header[2]': 'item[1][2]', 'header[3]': 'item[1][3]' } })
converter.write({ data: { 'header[1]': 'item[2][1]', 'header[2]': 'item[2][2]', 'header[3]': 'item[2][3]' } })
converter.write({ data: { 'header[1]': 'item[3][1]', 'header[2]': 'item[3][2]', 'header[3]': 'item[3][3]' } })
converter.end()
Acceptable CSV format
This basically follows RFC4180 but additionally needs to meet the following rules to make a common csv file easier to use:
- Fields must be Comma-Separated Values. (NOT Tab-Separated.)
- Fields can be enclosed in double-quotes to contain line breaks, double quotes and commas. (BUT a file cannot mix enclosed fields and not-enclosed fields.)
- A double-quote appearing inside a field must be escaped by preceding it with another double-quote or a backslash.
- This doesn't check a MIME Type such as text/csv.