@codyjasonbennett/fourwastaken3
v0.2.2
Published
Minimal three.js alternative.
Downloads
3
Maintainers
Readme
four
Minimal three.js alternative.
Table of Contents
Installation
To install, use your preferred package manager:
npm install four@npm:fourwastaken
yarn add four@npm:fourwastaken
pnpm add four@npm:fourwastaken
This will install fourwastaken
as four
; both will be available.
import * as FOUR from 'four'
Note: Vite may have issues consuming WebGPU code which relies on top-level await via ESM. This is well supported since 2021, but you may need to use vite-plugin-top-level-await to use this library with
vite.optimizeDeps
.
Getting Started
The following creates a renderer, camera, and renders a red cube:
import { WebGLRenderer, PerspectiveCamera, Geometry, Material, Mesh } from 'four'
const renderer = new WebGLRenderer()
renderer.setSize(window.innerWidth, window.innerHeight)
document.body.appendChild(renderer.canvas)
const camera = new PerspectiveCamera(45, window.innerWidth / window.innerHeight)
camera.position.z = 5
const geometry = new Geometry({
position: {
size: 3,
data: new Float32Array([
0.5, 0.5, 0.5, 0.5, -0.5, 0.5, 0.5, 0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, -0.5,
-0.5, -0.5, -0.5, -0.5, 0.5, 0.5, -0.5, -0.5, -0.5, -0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, 0.5, -0.5, -0.5, 0.5,
0.5, 0.5, 0.5, -0.5, -0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, -0.5, -0.5, -0.5, 0.5, -0.5, -0.5, -0.5, 0.5, -0.5,
0.5, -0.5, -0.5, -0.5, 0.5, -0.5, -0.5, 0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, 0.5, 0.5, 0.5, -0.5,
-0.5, 0.5, 0.5, -0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, -0.5, 0.5, -0.5, -0.5, -0.5, 0.5, -0.5, 0.5, -0.5, -0.5, -0.5,
-0.5, -0.5, -0.5, 0.5, -0.5,
]),
},
})
const material = new Material({
vertex: /* glsl */ `#version 300 es
uniform mat4 projectionMatrix;
uniform mat4 modelViewMatrix;
in vec3 position;
void main() {
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1);
}
`,
fragment: /* glsl */ `#version 300 es
out lowp vec4 color;
void main() {
color = vec4(1, 0, 0, 1);
}
`,
})
const mesh = new Mesh(geometry, material)
renderer.render(mesh, camera)
import { WebGPURenderer, PerspectiveCamera, Geometry, Material, Mesh } from 'four'
const renderer = new WebGPURenderer()
renderer.setSize(window.innerWidth, window.innerHeight)
document.body.appendChild(renderer.canvas)
const camera = new PerspectiveCamera(45, window.innerWidth / window.innerHeight)
camera.position.z = 5
const geometry = new Geometry({
position: {
size: 3,
data: new Float32Array([
0.5, 0.5, 0.5, 0.5, -0.5, 0.5, 0.5, 0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, -0.5,
-0.5, -0.5, -0.5, -0.5, 0.5, 0.5, -0.5, -0.5, -0.5, -0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, 0.5, -0.5, -0.5, 0.5,
0.5, 0.5, 0.5, -0.5, -0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, -0.5, -0.5, -0.5, 0.5, -0.5, -0.5, -0.5, 0.5, -0.5,
0.5, -0.5, -0.5, -0.5, 0.5, -0.5, -0.5, 0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, 0.5, 0.5, 0.5, -0.5,
-0.5, 0.5, 0.5, -0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, -0.5, 0.5, -0.5, -0.5, -0.5, 0.5, -0.5, 0.5, -0.5, -0.5, -0.5,
-0.5, -0.5, -0.5, 0.5, -0.5,
]),
},
})
const material = new Material({
vertex: /* wgsl */ `
struct Uniforms {
projectionMatrix: mat4x4<f32>,
modelViewMatrix: mat4x4<f32>,
};
@group(0) @binding(0) var<uniform> uniforms: Uniforms;
@vertex
fn main(@location(0) position: vec3<f32>) -> @builtin(position) vec4<f32> {
return uniforms.projectionMatrix * uniforms.modelViewMatrix * vec4(position, 1);
}
`,
fragment: /* wgsl */ `
@fragment
fn main() -> @location(0) vec4<f32> {
return vec4(1, 0, 0, 1);
}
`,
})
const mesh = new Mesh(geometry, material)
renderer.render(mesh, camera)
Object3D
An Object3D
represents a basic 3D object and its transforms. Objects are linked via their parent
and children
properties, constructing a rooted scene-graph.
const object = new Object3D()
object.add(new Object3D(), new Object3D())
object.traverse((node) => {
if (node !== object) object.remove(node)
if (!node.visible) return true
})
Vector3
A Vector3
represents a three-dimensional (x, y, z) vector and describes local position in Object3D.position
. It is also used to control local scale in Object3D.scale
.
object.position.set(1, 2, 3)
object.position.x = 4
object.position[0] = 5
Quaternion
A Quaternion
represents a four-dimensional vector with a rotation axis (x, y, z) and magnitude (w) and describes local orientation in Object3D.quaternion
.
object.quaternion.set(0, 0, 0, 1)
object.quaternion.fromEuler(Math.PI / 2, 0, 0)
object.quaternion.x *= -1
object.quaternion[0] *= -1
Matrix4
A Matrix4
represents a 4x4 transformation matrix and describes world transforms in Object3D.matrix
.
object.matrix.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 3, 1)
object.matrix[12] = 4
object.matrix.invert()
object.matrix.identity()
Mesh
A Mesh
contains a Geometry
and Material
to describe visual behavior, and can be manipulated in 3D as an Object3D
.
const geometry = new Geometry({ ... })
const material = new Material({ ... })
const mesh = new Mesh(geometry, material)
Geometry
A Geometry
contains an Attribute
list of vertex or storage buffer data, with a GPU buffer allocated for each Attribute
.
const geometry = new Geometry({
position: { size: 2, data: new Float32Array([-1, -1, 3, -1, -1, 3]) },
uv: { size: 2, data: new Float32Array([0, 0, 2, 0, 0, 2]) },
index: { size: 1, data: new Uint16Array([0, 1, 2]) },
})
A DrawRange
can also be configured to control rendering without submitting vertex data. This is useful for GPU-computed geometry or vertex pulling, as demonstrated in the fullscreen demos.
const geometry = new Geometry()
geometry.drawRange = { start: 0, count: 3 } // renders 3 vertices at starting index 0
Attribute
An Attribute
defines a data view, its per-vertex size, and an optional per-instance divisor (see instancing).
// Creates a 4x4 instance matrix for 2 instances
{
data: new Float32Array([
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
]),
size: 16,
divisor: 1,
}
Material
A Material
describes a program or shader interface for rasterization and compute (see compute), defining a vertex
and fragment
or compute
shader, respectively.
const material = new Material({
vertex: /* glsl */ `#version 300 es
uniform mat4 projectionMatrix;
uniform mat4 modelViewMatrix;
in vec3 position;
void main() {
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1);
}
`,
fragment: /* glsl */ `#version 300 es
out lowp vec4 color;
void main() {
color = vec4(1, 0, 0, 1);
}
`,
side: 'front',
transparent: false,
depthTest: true,
depthWrite: true,
})
const material = new Material({
vertex: /* wgsl */ `
struct Uniforms {
projectionMatrix: mat4x4<f32>,
modelViewMatrix: mat4x4<f32>,
};
@group(0) @binding(0) var<uniform> uniforms: Uniforms;
@vertex
fn main(@location(0) position: vec3<f32>) -> @builtin(position) vec4<f32> {
return uniforms.projectionMatrix * uniforms.modelViewMatrix * vec4(position, 1);
}
`,
fragment: /* wgsl */ `
@fragment
fn main() -> @location(0) vec4<f32> {
return vec4(1, 0, 0, 1);
}
`,
side: 'front',
transparent: false,
depthTest: true,
depthWrite: true,
})
Uniforms
The following uniforms are built-in and will be automatically populated when specified:
| Type | Name | Description | Conversion |
| -------- | ---------------- | -------------------------------------------------- | -------------------------- |
| mat4x4
| modelMatrix | world-space mesh transform | local space => world space |
| mat4x4
| projectionMatrix | clip-space camera projection | view space => clip space |
| mat4x4
| viewMatrix | inverse camera transform | world space => view space |
| mat4x4
| modelViewMatrix | premultiplied model-view transform | local space => view space |
| mat4x4
| normalMatrix | isotropic inverse model-view or "normal" transform | local space => view space |
In WebGPU, uniforms are bound to a single uniform buffer, preceded by storage buffers, and followed by sampler-texture for texture uniforms.
// Storage buffers
@group(0) @binding(0)
var<storage, read_write> data: array<vec2<f32>>;
// Uniform buffer
struct Uniforms {
time: f32,
};
@group(0) @binding(1) var<uniform> uniforms: Uniforms;
// Texture bindings
@group(0) @binding(2) var sample: sampler;
@group(0) @binding(3) var color: texture_2d<f32>;
@group(0) @binding(4) var sample_2: sampler;
@group(0) @binding(5) var color_2: texture_2d<f32>;
Blending
By default, opaque meshes do not blend but replace values, and transparent meshes alpha blend by the following blend equation:
material.blending = {
color: {
operation: 'add',
srcFactor: 'src-alpha',
dstFactor: 'one-minus-src-alpha',
},
alpha: {
operation: 'add',
srcFactor: 'one',
dstFactor: 'one-minus-src-alpha',
},
}
This gets applied to the final fragment color as src * srcFactor + dst * dstFactor
, assuming a premultiplied alpha.
Custom blending can be used for postprocessing and various VFX. The following are the most common configurations:
| Blend Mode | BlendOperation | BlendFactor (src) | BlendFactor (dst) |
| -------------- | ------------------ | --------------------- | ----------------- |
| Additive | add
| src-alpha
| one
|
| Subtractive | reverse-subtract
| src-alpha
| one
|
| Multiply | add
| dst-color
| zero
|
| Screen | add
| one-minus-src-color
| one
|
| Maximize | max
| src-alpha
| dst-alpha
|
| Custom | add
| one
| one
|
| Local Additive | add
| dst-alpha
| one
|
| Disabled | add
| one
| zero
|
Texture
A Texture
transports or stores image or video data to the GPU as well as data like normals or depth.
const pixel = new Uint8ClampedArray([76, 51, 128, 255])
const image = await createImageBitmap(new ImageData(pixel, 1, 1))
const texture = new Texture(image)
Sampler
A Sampler
configures texel filtering and transforms for a texture, and can be used to sample a texture multiple times with different configurations in a shader.
const sampler = new Sampler({
magFilter: 'nearest',
minFilter: 'nearest',
wrapS: 'clamp',
wrapT: 'clamp',
anisotropy: 1,
})
texture.sampler = sampler
RenderTarget
A RenderTarget
constructs a frame buffer object which can be drawn to, similar to the canvas itself. Unlike the canvas, render targets can have multiple attachments or texture channels, configurable as the third argument count
, enabling efficient use of techniques like deferred rendering and postprocessing.
// Create render target with 4 channels
const width = window.innerWidth
const height = window.innerHeight
const count = 4
const renderTarget = new RenderTarget(width, height, count)
// Resize with page
window.addEventListener('resize', () => {
const width = window.innerWidth
const height = window.innerHeight
renderTarget.setSize(width, height)
})
// Bind and render to render target
renderer.setRenderTarget(renderTarget)
renderer.render(scene, camera)
// Unbind to canvas
renderer.setRenderTarget(null)
Camera
A Camera
contains matrices and a frustum for projection transforms and queries. The type of projection is defined by Camera.projectionMatrix
.
Frustum
A Frustum
contains clipping planes used for frustum culling and queries, set from a projectionViewMatrix.
camera.frustum.fromMatrix4(camera.projectionViewMatrix)
if (camera.frustum.contains(mesh)) {
// ...
}
PerspectiveCamera
A PerspectiveCamera
calculates a perspective or non-linear projectionMatrix
, where objects appear smaller by distance.
const fov = 75
const aspect = canvas.width / canvas.height
const near = 0.1
const far = 1000
const camera = new PerspectiveCamera(fov, aspect, near, far)
OrthographicCamera
An OrthographicCamera
calculates an orthographic or linear projectionMatrix
, where objects are unaffected by distance.
const near = 0.1
const far = 1000
const left = -(canvas.width / 2)
const right = canvas.width / 2
const bottom = -(canvas.height / 2)
const top = canvas.height / 2
const camera = new OrthographicCamera(near, far, left, right, bottom, top)
Rendering
Four supports WebGL 2 and WebGPU with WebGLRenderer
and WebGPURenderer
, respectively, and implements a shared API for rendering and compute.
const renderer = new WebGLRenderer()
renderer.setSize(window.innerWidth, window.innerHeight)
document.body.appendChild(renderer.canvas)
//
const renderer = new WebGPURenderer()
renderer.setSize(window.innerWidth, window.innerHeight)
document.body.appendChild(renderer.canvas)
Instancing
Four instances by default, which better aligns with WebGPU. Instanced rendering rasterizes multiple vertex primitives with the same shader interface to render multiple meshes at the cost of one.
You can specify the number of instances to render with Mesh.instances
and add variance or control each instance with Attribute.divisor
to specify a per-instance divisor. A divisor of one will be used by a single instance, and a divisor greater than one will be used by multiple instances.
Note: Attributes can only allocate primitive types in WebGPU (gpuweb/gpuweb#1652), so you must allocate and index storage or uniform buffers via the
instance_index
built-in for complex types like matrices.
const geometry = new Geometry({
position: { size: 3, data: new Float32Array([...]) },
instanceMatrix: { divisor: 1, size: 16, data: new Float32Array([...]) }
})
const material = new Material({
vertex: /* glsl */`#version 300 es
uniform mat4 projectionMatrix;
uniform mat4 modelViewMatrix;
in mat4 instanceMatrix;
in vec3 position;
void main() {
gl_Position = projectionMatrix * modelViewMatrix * instanceMatrix * vec4(position, 1);
}
`,
fragment: /* glsl */`#version 300 es
out lowp vec4 color;
void main() {
color = vec4(1, 0, 0, 1);
}
`
})
const mesh = new Mesh(geometry, material)
mesh.instances = 2
const geometry = new Geometry({
position: { size: 3, data: new Float32Array([...]) },
})
const material = new Material({
uniforms: {
instanceMatrix: new Float32Array([...]),
},
vertex: /* wgsl */ `
struct Uniforms {
projectionMatrix: mat4x4<f32>,
modelViewMatrix: mat4x4<f32>,
instanceMatrix: array<mat4x4<f32>, 2>,
};
@group(0) @binding(0) var<uniform> uniforms: Uniforms;
@vertex
fn main(
@builtin(instance_index) instanceID: u32,
@location(0) position: vec3<f32>,
) -> @builtin(position) vec4<f32> {
return uniforms.projectionMatrix * uniforms.modelViewMatrix * uniforms.instanceMatrix[instanceID] * vec4(position, 1.0);
}
`,
fragment: /* wgsl */ `
@fragment
fn main() -> @location(0) vec4<f32> {
return vec4(1, 0, 0, 1);
}
`,
})
const mesh = new Mesh(geometry, material)
mesh.instances = 2
Compute
Four supports compute for both WebGL and WebGPU via transform feedback and compute pipelines, respectively. This can be used in lieu of pixel shaders to write directly to buffer storage without any CPU reads/writes to textures. Useful for high precision compute or large simulations where VRAM is limited.
The following populates geometry buffers on the GPU, computing a fullscreen triangle geometry:
const geometry = new Geometry({
position: { size: 2, data: new Float32Array(6) },
uv: { size: 2, data: new Float32Array(6) },
})
const computeMaterial = new Material({
compute: /* glsl */ `#version 300 es
out vec2 position;
out vec2 uv;
const vec2 vertex[3] = vec2[](vec2(-1), vec2(3, -1), vec2(-1, 3));
void main() {
position = vertex[gl_VertexID];
uv = abs(position) - 1.0;
}
`,
})
const mesh = new Mesh(geometry, computeMaterial)
renderer.compute(mesh)
const geometry = new Geometry({
position: { size: 2, data: new Float32Array(6) },
uv: { size: 2, data: new Float32Array(6) },
})
const computeMaterial = new Material({
compute: /* wgsl */ `
@group(0) @binding(0)
var<storage, read_write> position: array<vec2<f32>>;
@group(0) @binding(1)
var<storage, read_write> uv: array<vec2<f32>>;
const vertex = array<vec2<f32>, 3>(vec2(-1), vec2(3, -1), vec2(-1, 3));
@compute @workgroup_size(64)
fn main(@builtin(local_invocation_index) i: u32) {
position[i] = vertex[i];
uv[i] = abs(vertex[i]) - 1.0;
}
`,
})
const mesh = new Mesh(geometry, computeMaterial)
renderer.compute(mesh)