npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@cloudlessopenlabs/ml

v0.1.1

Published

Set of machine learning and linear algebra tools.

Downloads

10

Readme

CLOUDLESS OPEN LABS - MACHINE LEARNING

This library implements common machine learning and linear algebra algorithms. It is built upon the following dependencies:

  • svd-js: A lightweight implementation of the SVD decomposition.
  • mathjs: A general Math library. It is used for its FFT and IFFT APIs.
  • @rayyamhk/matrix (NOT EXPLICIT): A lightweight implementation of matrix operations such as QR, LU, eigenvalues, rank... This library is not explicitly used, but bits and pieces of its codebase was used. The reason it could not be used as a dependency is that it did not support ES6 import/export APIs.
npm i @cloudlessopenlabs/ml

ES6:

import { backward, det, inverse, lu, qr, rank, svd, matrix } from '@cloudlessopenlabs/ml/linalg'
import { bilinear } from '@cloudlessopenlabs/ml/interpolation'
import { nonlinear } from '@cloudlessopenlabs/ml/regression'
import { spectrum, filter } from '@cloudlessopenlabs/ml/signal'
// CommonJS:
// const { linalg, interpolation, regression, signal } = require('@cloudlessopenlabs/ml')

const interpolate = bilinear([
	{ x:0, y:0, z:0	},
	{ x:1, y:0, z:0	},
	{ x:1, y:1, z:1	},
	{ x:0, y:1, z:1	}
])

console.log(interpolate({ x:0.5, y:0.5 })) // 0.5

Table of contents

APIs

linalg

ES6:

import { backward, det, inverse, lu, qr, rank, svd } from '@cloudlessopenlabs/ml/linalg'

CommonJS:

const { linalg } = require('@cloudlessopenlabs/ml')
const { backward, det, inverse, lu, qr, rank, svd } = linalg

backward

import { backward } from '@cloudlessopenlabs/ml/linalg'
// import backward from '@cloudlessopenlabs/ml/linalg/backward'
// // CommonJS
// const { linalg:{ backward } } = require('@cloudlessopenlabs/ml')

det

import { det } from '@cloudlessopenlabs/ml/linalg'
// import det from '@cloudlessopenlabs/ml/linalg/det'
// // CommonJS
// const { linalg:{ det } } = require('@cloudlessopenlabs/ml')

const C = [
	[1 , 2 , 3 , 4 , 5 , 6],
	[11, 12, 33, 54, 3 , 4],
	[3 , 9 , 17, 43, 61, 2],
	[7 , 21, 21, 7 , 23, 2],
	[21, 8 , 87, 3 , 34, 3],
	[14, 5 , 0 , 1 , 9 , 18]
]

console.log(det(C)) // -387953848

inverse

import { inverse, dot } from '@cloudlessopenlabs/ml/linalg'
// import inverse from '@cloudlessopenlabs/ml/linalg/inverse'
// // CommonJS
// const { linalg:{ inverse } } = require('@cloudlessopenlabs/ml')

const C = [
	[1 , 2 , 3 , 4 , 5 , 6],
	[11, 12, 33, 54, 3 , 4],
	[3 , 9 , 17, 43, 61, 2],
	[7 , 21, 21, 7 , 23, 2],
	[21, 8 , 87, 3 , 34, 3],
	[14, 5 , 0 , 1 , 9 , 18]
]

const C_1 = inverse(C)

console.log(dot(C_1,C))
//[
//	[1 , 0, 0, 0, 0, 0],
//	[0 , 1, 0, 0, 0, 0],
//	[0 , 0, 1, 0, 0, 0],
//	[0 , 0, 0, 1, 0, 0],
//	[0 , 0, 0, 0, 1, 0],
//	[0 , 0, 0, 0, 0, 1]
//]

lu

import { lu } from '@cloudlessopenlabs/ml/linalg'
// import lu from '@cloudlessopenlabs/ml/linalg/lu'
// // CommonJS
// const { linalg:{ lu } } = require('@cloudlessopenlabs/ml')

matrix

import { matrix } from '@cloudlessopenlabs/ml/linalg'
// import matrix from '@cloudlessopenlabs/ml/linalg/matrix'
// // CommonJS
// const { linalg:{ matrix } } = require('@cloudlessopenlabs/ml')

qr

import { qr, dot } from '@cloudlessopenlabs/ml/linalg'
// import qr from '@cloudlessopenlabs/ml/linalg/qr'
// // CommonJS
// const { linalg:{ qr } } = require('@cloudlessopenlabs/ml')

const A = [
	[1,2],
	[3,4]
]

const [Q,R] = qr(A) // Where R is an upper-triangular matrix and Q is orthonormal (Q^T = Q^-1)
console.log(dot(Q,R))
//[
//	[1,2],
//	[3,4]
//]

rank

import { rank } from '@cloudlessopenlabs/ml/linalg'
// import rank from '@cloudlessopenlabs/ml/linalg/rank'
// // CommonJS
// const { linalg:{ rank } } = require('@cloudlessopenlabs/ml')

const B = [
	[1,2,3],
	[4,5,6],
	[7,8,9]
]

console.log(rank(B)) // 2

svd

import { svd } from '@cloudlessopenlabs/ml/linalg'
// import svd from '@cloudlessopenlabs/ml/linalg/svd'
// // CommonJS
// const { linalg:{ svd } } = require('@cloudlessopenlabs/ml')

interpolation

ES6:

import { bilinear } from '@cloudlessopenlabs/ml/interpolation'

CommonJS:

const { interpolation } = require('@cloudlessopenlabs/ml')
const { bilinear } = interpolation

bilinear

import { bilinear } from '@cloudlessopenlabs/ml/interpolation'
// import bilinear from '@cloudlessopenlabs/ml/interpolation/bilinear'
// // CommonJS
// const { interpolation:{ bilinear } } = require('@cloudlessopenlabs/ml')

const interpolate = bilinear([
	{ x:0, y:0, z:0	},
	{ x:1, y:0, z:0	},
	{ x:1, y:1, z:1	},
	{ x:0, y:1, z:1	}
])

console.log(interpolate({ x:0.5, y:0.5 })) // 0.5

regression

ES6:

import { nonlinear } from '@cloudlessopenlabs/ml/regression'

CommonJS:

const { regression } = require('@cloudlessopenlabs/ml')
const { nonlinear } = regression

nonlinear

import { nonlinear } from '@cloudlessopenlabs/ml/regression'
// import nonlinear from '@cloudlessopenlabs/ml/regression/nonlinear'
// // CommonJS
// const { regression:{ nonlinear } } = require('@cloudlessopenlabs/ml')

signal

spectrum

import { spectrum } from '@cloudlessopenlabs/ml/signal'
// import spectrum from '@cloudlessopenlabs/ml/signal/spectrum'
// // CommonJS
// const { signal: { spectrum } } = require('@cloudlessopenlabs/ml')

import { range } from 'mathjs'

const SAMPLE_RATE_HZ = 10
const TIME_INTERVAL_SEC = 2
const SIGNAL_FREQ_HZ = 2

const timeSeries = range(0, TIME_INTERVAL_SEC, 1/SAMPLE_RATE_HZ).toArray()
// Creates 2Hz sinusoid
const sinusoid = timeSeries.map(t => Math.sin((t/SIGNAL_FREQ_HZ)*2*Math.PI))

const [errors, spect] = spectrum(sinusoid, SAMPLE_RATE_HZ)

console.log(spect)
// [{
//	idx: 0,
//	phasor: { re: 5.88418203051333e-15, im: 1.4660299807724221e-15 },
//	magnitude: 6.064061516239719e-15,
//	frequency: 0,
//	fftFrequency: 0
// }, ..., {
//	idx: 10,
//	phasor: Complex { re: -7.771561172376096e-16, im: -3.370020422758625e-17 },
//	magnitude: 7.778864533624546e-16,
//	frequency: 5,
//	fftFrequency: 5
//}, ..., {
//	idx: 19,
//	phasor: Complex { re: -4.6629367034256575e-15, im: 9.999999999999993 },
//	magnitude: 9.999999999999993,
//	frequency: 0.5,
//	fftFrequency: 9.5
//}]

Where:

  • spect is an array of all the phasors including complex and their conjugate (1).
  • phasor: Complex number. The real part is the amplitude of the cosine component, while the imaginary part is the amplitude of the sine component.
  • magnitude is the the magnitude of the frequency.
  • frequency is the frequency.
  • fftFrequency is the frequency represented by the FFT (2).

(1) The FFT represents a signal in the frequency space using complex numbers (phasors). A single frequency is represented by two complex numbers (a complex number and its conjugate). (2) The FFT associates phasor's conjugate with a ever growing frequency number when it goes above the Nyquist value. In reality, those frequency are the same as the lower frequency associated with their conjugate.

filter

lowpass

import { filter } from '@cloudlessopenlabs/ml/signal'
// import filter from '@cloudlessopenlabs/ml/signal/filter'
// import lowpass from '@cloudlessopenlabs/ml/signal/filter/lowpass'
// // CommonJS
// const { signal: { filter: { lowpass } } } = require('@cloudlessopenlabs/ml')

const SAMPLE_RATE_HZ = 10
const TIME_INTERVAL_SEC = 2
const SIGNAL_FREQ_HZ = 2
const CUT_OFF_FREQ = 0.5

const timeSeries = range(0, TIME_INTERVAL_SEC, 1/SAMPLE_RATE_HZ).toArray()
// Creates 2Hz sinusoid
const sinusoid = timeSeries.map(t => Math.sin((t/SIGNAL_FREQ_HZ)*2*Math.PI))

// Removes the frequencies higher than 0.5Hz
const [errors, filteredSignal] = filter.lowpass(sinusoid, SAMPLE_RATE_HZ, CUT_OFF_FREQ)

console.log(filteredSignal)