npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@christbaum/ngraph.forcelayout

v3.3.3

Published

Force directed graph drawing layout

Downloads

5

Readme

ngraph.forcelayout

build status

This is a force directed graph layout algorithm, that works in any dimension (2D, 3D, and above).

The library uses quad tree to speed up computation of long-distance forces.

This repository is part of ngraph family, and operates on ngraph.graph data structure.

API

All force directed algorithms are iterative. We need to perform multiple iterations of an algorithm, before graph starts looking good:

// graph is an instance of `ngraph.graph` object.
var createLayout = require('ngraph.forcelayout');
var layout = createLayout(graph);
for (var i = 0; i < ITERATIONS_COUNT; ++i) {
  layout.step();
}

// now we can ask layout where each node/link is best positioned:
graph.forEachNode(function(node) {
  console.log(layout.getNodePosition(node.id));
  // Node position is pair of x,y coordinates:
  // {x: ... , y: ... }
});

graph.forEachLink(function(link) {
  console.log(layout.getLinkPosition(link.id));
  // link position is a pair of two positions:
  // {
  //   from: {x: ..., y: ...},
  //   to: {x: ..., y: ...}
  // }
});

If you'd like to perform graph layout in space with more than two dimensions, just add one argument to this line:

let layout = createLayout(graph, {dimensions: 3}); // 3D layout
let nodePosition = layout.getNodePosition(nodeId); // has {x, y, z} attributes

Even higher dimensions are not a problem for this library:

let layout = createLayout(graph, {dimensions: 6}); // 6D layout
// Every layout with more than 3 dimensions, say N, gets additional attributes:
// c4, c5, ... cN
let nodePosition = layout.getNodePosition(nodeId); // has {x, y, z, c4, c5, c6} 

Note: Higher dimensionality comes at exponential cost of memory for every added dimension. See a performance section below for more details.

Node position and object reuse

Recently immutability became a ruling principle of javascript world. This library doesn't follow the rules, and results of getNodePosition()/getLinkPosition() will be always the same for the same node. This is true:

layout.getNodePosition(1) === layout.getNodePosition(1);

Reason for this is performance. If you are interested in storing positions somewhere else, you can do it and they still will be updated after each force directed layout iteration.

"Pin" node and initial position

Sometimes it's desirable to tell layout algorithm not to move certain nodes. This can be done with pinNode() method:

var nodeToPin = graph.getNode(nodeId);
layout.pinNode(nodeToPin, true); // now layout will not move this node

If you want to check whether node is pinned or not you can use isNodePinned() method. Here is an example how to toggle node pinning, without knowing it's original state:

var node = graph.getNode(nodeId);
layout.pinNode(node, !layout.isNodePinned(node)); // toggle it

What if you still want to move your node according to some external factor (e.g. you have initial positions, or user drags pinned node)? To do this, call setNodePosition() method:

layout.setNodePosition(nodeId, x, y);

Monitoring changes

Like many other algorithms in ngraph family, force layout monitors graph changes via graph events. It keeps layout up to date whenever graph changes:

var graph = require('ngraph.graph')(); // empty graph
var layout = require('ngraph.layout')(graph); // layout of empty graph

graph.addLink(1, 2); // create node 1 and 2, and make link between them
layout.getNodePosition(1); // returns position.

If you want to stop monitoring graph events, call dispose() method:

layout.dispose();

Physics Simulator

Simulator calculates forces acting on each body and then deduces their position via Newton's law. There are three major forces in the system:

  1. Spring force keeps connected nodes together via Hooke's law
  2. Each body repels each other via Coulomb's law
  3. The drag force slows the entire simulation down, helping with convergence.

Body forces are calculated in n*lg(n) time with help of Barnes-Hut algorithm implemented with quadtree.

// Configure
var physicsSettings = {
  timeStep: 0.5,
  dimensions: 2,
  gravity: -12,
  theta: 0.8,
  springLength: 10,
  springCoefficient: 0.8,
  dragCoefficient: 0.9,
};

// pass it as second argument to layout:
var layout = require('ngraph.forcelayout')(graph, physicsSettings);

You can get current physics simulator from layout by checking layout.simulator property. This is a read only property.

Space occupied by graph

Finally, it's often desirable to know how much space does our graph occupy. To quickly get bounding box use getGraphRect() method:

var rect = layout.getGraphRect();
// rect.min_x, rect.min_y - left top coordinates of the bounding box
// rect.max_x, rect.max_y - right bottom coordinates of the bounding box

Manipulating bodies

This is advanced technique to get to internal state of the simulator. If you need to get a node position use regular layout.getNodePosition(nodeId) described above.

In some cases you really need to manipulate physic attributes on a body level. To get to a single body by node id:

var graph = createGraph();
graph.addLink(1, 2);

// Get body that represents node 1:
var body = layout.getBody(1);
assert(
  typeof body.pos.x === 'number' &&
  typeof body.pos.y === 'number', 'Body has position');
assert(body.mass, 'Body has mass');

To iterate over all bodies at once:

layout.forEachBody(function(body, nodeId) {
  assert(
    typeof body.pos.x === 'number' &&
    typeof body.pos.y === 'number', 'Body has position');
  assert(graph.getNode(nodeId), 'NodeId is coming from the graph');
});

Section about performance

This library is focused on performance of physical simulation. We use quad tree data structure in 2D space to approximate long distance forces, and reduce amount of required computations.

When layout is performed in higher dimensions we use analogues tree data structure. By design such tree requires to store 2^dimensions_count child nodes on each node. In practice, performing layout in 6 dimensional space on a graph with a few thousand nodes yields decent performance on modern mac book (graph can be both rendered and layed out at 60FPS rate).

Additionally, the vector algebra is optimized by a ad-hoc code generation. Essentially this means that upon first load of the library, we check the dimension of the space where you want to perform layout, and generate all required data structure to run fast in this space.

The code generation happens only once when dimension is requested. Any subsequent layouts in the same space would reuse generated codes. It is pretty fast and cool.

install

With npm do:

npm install ngraph.forcelayout

Or download from CDN:

<script src='https://unpkg.com/[email protected]/dist/ngraph.forcelayout.min.js'></script>

If you download from CDN the library will be available under ngraphCreateLayout global name.

license

MIT

Feedback?

I'd totally love it! Please email me, open issue here, tweet to me, or join discussion on gitter.

If you love this library, please consider sponsoring it at https://github.com/sponsors/anvaka or at https://www.patreon.com/anvaka