@chatjet-ai/web
v0.5.3
Published
A web component for adding GPT-4 powered search using the Markprompt API.
Downloads
4
Readme
@chatjet-ai/web
A prebuilt version of the Markprompt dialog, based on @chatjet-ai/react
, built with Preact for bundle-size savings. Viable for use from vanilla JavaScript or any framework.
Table of Contents
Installation
Install the package from NPM:
npm add @chatjet-ai/web @chatjet-ai/css
Usage
Include the CSS on your page, via a link tag or by importing it in your JavaScript:
<!-- load from a CDN: -->
<link rel="stylesheet" href="https://esm.sh/@chatjet-ai/[email protected]?css" />
import '@chatjet-ai/css';
Call the markprompt
function with your project key:
import { markprompt } from '@chatjet-ai/web';
const markpromptEl = document.querySelector('#markprompt');
markprompt('<project-key>', markpromptEl, {
references: {
transformReferenceId: (referenceId) => ({
text: referenceId.replace('-', ' '),
href: `/docs/${referenceId}`,
}),
},
});
where project-key
can be obtained in your project settings on chatjet.
Options are optional and allow you to configure the texts used in the component to some extent. You will most likely want to pass transformReferenceId
to transform your reference ids into links to your corresponding documentation.
type Options = {
/** Props for the close modal button */
close?: {
/** Aria-label for the close modal button */
label?: string;
};
/** Props for the description */
description?: {
/** Whether to hide the description, default: `true` */
hide?: boolean;
/** Text for the description */
text?: string;
};
/** Props for the prompt */
prompt?: {
/** Label for the prompt input, default: `Ask me anything…` */
label?: string;
/** Placeholder for the prompt input, default: `Ask me anything…` */
placeholder?: string;
};
references?: {
/** Callback to transform a reference id into an href and text */
transformReferenceId?: (referenceId: string) => {
href: string;
text: string;
};
/** Loading text, default: `Fetching relevant pages…` */
loadingText?: string;
/** References title, default: `Answer generated from the following sources:` */
referencesText?: string;
};
search?: {
/** Enable search **/
enable?: boolean;
/** Callback to transform a search result into an href */
getResultHref?: (result: FlattenedSearchResult) => string;
};
/** Props for the trigger */
trigger?: {
/** Aria-label for the trigger button */
label?: string;
};
/** Props for the title */
title?: {
/** Whether to hide the title, default: `true` */
hide?: boolean;
/** Text for the title: default `Ask me anything` */
text?: string;
};
};
Styles are easily overridable for customization via targeting classes. Additionally, see the styling section in our documentation for a full list of variables.
Usage via <script>
tag
Besides initializing the Markprompt component yourselves from JavaScript, you can load the script from a CDN. You can attach the options for the Markprompt component to the window prior to loading our script:
<link
rel="stylesheet"
href="https://unpkg.com/@chatjet-ai/[email protected]/markprompt.css"
/>
<script>
window.markprompt = {
projectKey: `<your-project-key>`,
container: `#markprompt`,
options: {
references: {
transformReferenceId: (referenceId) => ({
text: referenceId.replace('-', ' '),
href: `/docs/${referenceId}`,
}),
},
},
};
</script>
<script
async
src="https://unpkg.com/@chatjet-ai/[email protected]/dist/init.js"
></script>
API
markprompt(projectKey, container, options?)
Render a Markprompt dialog button.
Arguments
projectKey
(string
): Your Markprompt project key.container
(HTMLElement | string
): The element or selector to render Markprompt into.options
(object
): Options for customizing Markprompt.
Options
completionsUrl
(string
): URL at which to fetch completionsiDontKnowMessage
(string
): Message returned when the model does not have an answermodel
(OpenAIModelId
): The OpenAI model to usepromptTemplate
(string
): The prompt templatetemperature
(number
): The model temperaturetopP
(number
): The model top PfrequencyPenalty
(number
): The model frequency penaltypresencePenalty
(number
): The model present penaltymaxTokens
(number
): The max number of tokens to include in the responsesectionsMatchCount
(number
): The number of sections to include in the prompt contextsectionsMatchThreshold
(number
): The similarity threshold between the input question and selected sectionssignal
(AbortSignal
): AbortController signalclose.label
(string
):aria-label
for the close modal button. (Default:"Close Markprompt"
)decription.hide
(boolean
): Visually hide the description. (Defaulttrue
)decription.text
(string
): Description text.prompt.label
)string
): Label for the prompt input. (Default"Your prompt"
)prompt.placeholder
)string
): Placeholder for the prompt input. (Default"Ask me anything…"
)references.transformReferenceId
(Function
): Callback to transform a reference id into an href and text.references.loadingText
(string
) Loading text. (Default:Fetching relevant pages…
)references.referencesText
(string
): References title. (Default:"Answer generated from the following sources:"
)trigger.label
(string
):aria-label
for the open button. (Default:"Open Markprompt"
)title.hide
(boolean
): Visually hide the title. (Default:true
)title.text
(string
): Text for the title. (Default:"Ask me anything"
)showBranding
(boolean
): Show Markprompt branding. (Default:true
)
Documentation
The full documentation for @chatjet-ai/web
can be found on the Markprompt docs.
Community
Authors
This library is created by the team behind Markprompt (@chatjet-ai).