@catchfashion/typebox
v1.0.1
Published
JSONSchema Type Builder with Static Type Resolution for TypeScript
Downloads
5
Readme
Install
$ npm install @sinclair/typebox --save
Overview
TypeBox is a type builder library that allows developers to compose in-memory JSON Schema objects that can be statically resolved to TypeScript types. The schemas produced by TypeBox can be used directly as validation schemas or reflected upon by navigating the standard JSON Schema properties at runtime. TypeBox can be used as a simple tool to build up complex schemas or integrated into RPC or REST services to help validate JSON data received over the wire.
TypeBox does not provide any mechanism for validating JSON Schema. Please refer to libraries such as AJV or similar to validate the schemas created with this library.
Requires TypeScript 3.8.3 and above.
License MIT
Contents
Example
The following shows the general usage.
import { Type, Static } from '@sinclair/typebox'
// some type ...
type Order = {
email: string,
address: string,
quantity: number,
option: 'pizza' | 'salad' | 'pie'
}
// ... can be expressed as ...
const Order = Type.Object({
email: Type.String({ format: 'email' }),
address: Type.String(),
quantity: Type.Number({ minimum: 1, maximum: 99 }),
option: Type.Union([
Type.Literal('pizza'),
Type.Literal('salad'),
Type.Literal('pie')
])
})
// ... which can be reflected
console.log(JSON.stringify(Order, null, 2))
// ... and statically resolved
type TOrder = Static<typeof Order>
// .. and validated as JSON Schema
JSON.validate(Order, { // IETF | TC39 ?
email: '[email protected]',
address: '...',
quantity: 99,
option: 'pie'
})
// ... and so on ...
Types
TypeBox provides a number of functions to generate JSON Schema data types. The following tables list the functions TypeBox provides and their respective TypeScript and JSON Schema equivalents.
TypeBox > TypeScript
TypeBox > JSON Schema
Type Modifiers
The following are object property modifiers. Note that Type.Optional(...)
will make the schema object property optional. Type.Readonly(...)
however has no effect on the underlying schema as is only meaningful to TypeScript.
Enums
It is possible to define TypeScript enums and use them as part of your TypeBox schema. Both number and string-valued enums are supported.
enum Color {
Red = 'red',
Blue = 'blue'
}
const T = Type.Enum(Color); // -> json-schema: `{ enum: ['red','green'] }`
Note that the generated json-schema will only permit the values of the enum, not its keys. In TypeScript, if you omit the value for an enum option, TypeScript will implicitly assign the option a numeric value.
E.g.:
enum Color {
Red, // implicitly gets value `0`
Blue // implicitly gets value `1`
}
const T = Type.Enum(Color); // -> json-schema: `{ enum: [0, 1] }`
User Defined Schema Properties
It's possible to specify custom properties on schemas. The last parameter on each TypeBox function accepts an optional UserDefinedOptions
object. Properties specified in this object will appear as properties on the resulting schema object. Consider the following.
const T = Type.Object({
value: Type.String({
description: 'A required string.'
})
}, {
description: 'An object with a value'
})
{
"description": "An object with a value",
"type": "object",
"properties": {
"value": {
"description": "A required string.",
"type": "string"
}
},
"required": [
"value"
]
}
Function Types
TypeBox allows function signatures to be composed in a similar way to other types, but uses a custom schema format to achieve this. Note, this format is not JSON Schema, rather it embeds JSON Schema to encode function arguments
and return
types. The format also provides additional types not present in JSON Schema; Type.Constructor()
, Type.Void()
, Type.Undefined()
, and Type.Promise()
.
For more information on using functions, see the Functions and Generics sections below.
Format
The following is an example of how TypeBox encodes function signatures.
type T = (a: string, b: number) => boolean
{
"type": "function",
"returns": { "type": "boolean" },
"arguments": [
{"type": "string" },
{"type": "number" },
]
}
TypeBox > TypeScript
TypeBox > JSON Function
Functions
The following demonstrates creating function signatures for the following TypeScript types.
TypeScript
type T0 = (a0: number, a1: string) => boolean;
type T1 = (a0: string, a1: () => string) => void;
type T2 = (a0: string) => Promise<number>;
type T3 = () => () => string;
type T4 = new () => string
TypeBox
const T0 = Type.Function([Type.Number(), Type.String()], Type.Boolean())
const T1 = Type.Function([Type.String(), Type.Function([], Type.String())], Type.Void())
const T2 = Type.Function([Type.String()], Type.Promise(Type.Number()))
const T3 = Type.Function([], Type.Function([], Type.String()))
const T4 = Type.Constructor([], Type.String())
Generics
Generic function signatures can be composed with TypeScript functions with Generic Constraints.
TypeScript
type ToString = <T>(t: T) => string
TypeBox
import { Type, Static, TStatic } from '@sinclair/typebox'
const ToString = <G extends TStatic>(T: G) => Type.Function([T], Type.String())
However, it's not possible to statically infer what type ToString
is without first creating some specialized variant of it. The following creates a specialization called NumberToString
.
const NumberToString = ToString(Type.Number())
type X = Static<typeof NumberToString>
// X is (arg0: number) => string
To take things a bit further, the following code contains some generic TypeScript REST setup with controllers that take some generic resource of type T
. Below this we express that same setup using TypeBox. The resulting type IRecordController
contains reflectable interface metadata about the RecordController
.
TypeScript
interface IController<T> {
get (): Promise<T>
post (resource: T): Promise<void>
put (resource: T): Promise<void>
delete (resource: T): Promise<void>
}
interface Record {
key: string
value: string
}
class RecordController implements IController<Record> {
async get (): Promise<Record> { throw 'not implemented' }
async post (resource: Record): Promise<void> { /* */ }
async put (resource: Record): Promise<void> { /* */ }
async delete(resource: Record): Promise<void> { /* */ }
}
TypeBox
import { Type, Static, TStatic } from '@sinclair/typebox'
const IController = <G extends TStatic>(T: G) => Type.Object({
get: Type.Function([], Type.Promise(T)),
post: Type.Function([T], Type.Promise(Type.Void())),
put: Type.Function([T], Type.Promise(Type.Void())),
delete: Type.Function([T], Type.Promise(Type.Void())),
})
type Record = Static<typeof Record>
const Record = Type.Object({
key: Type.String(),
value: Type.String()
})
type IRecordController = Static<typeof IRecordController>
const IRecordController = IController(Record)
class RecordController implements IRecordController {
async get (): Promise<Record> { throw 'not implemented' }
async post (resource: Record): Promise<void> { /* */ }
async put (resource: Record): Promise<void> { /* */ }
async delete(resource: Record): Promise<void> { /* */ }
}
// Reflect
console.log(IRecordController)
Validation
The following uses the library Ajv to validate a type.
import * Ajv from 'ajv'
const ajv = new Ajv({ })
ajv.validate(Type.String(), 'hello') // true
ajv.validate(Type.String(), 123) // false