@bonniernews/xgboost
v2.0.0
Published
XGBoost in Node.js
Downloads
30
Maintainers
Readme
XGBoost-Node
eXtreme Gradient Boosting Package in Node.js
XGBoost-Node is a Node.js interface of XGBoost. XGBoost is a library from DMLC. It is designed and optimized for boosted trees. The underlying algorithm of XGBoost is an extension of the classic gbm algorithm. With multi-threads and regularization, XGBoost is able to utilize more computational power and get a more accurate prediction.
The package is made to run existing XGBoost model with Node.js easily.
Features
Runs XGBoost Model and make predictions in Node.js.
Both dense and sparse matrix input are supported, and missing value is handled.
Supports Linux, macOS.
Install
Install from npm
npm install xgboost
Install from GitHub
git clone --recursive [email protected]:nuanio/xgboost-node.git
npm install
Documentation
Roadmap
- [x] Matrix API
- [x] Model API
- [x] Prediction API
- [x] Async API
- [ ] Windows Support
- [ ] Training API
- [ ] Visualization API
Examples
Train a XGBoost model and save to a file, more in doc.
Load the model with XGBoost-Node:
const xgboost = require('xgboost');
const model = xgboost.XGModel('iris.xg.model');
const input = new Float32Array([
5.1, 3.5, 1.4, 0.2, // class 0
6.6, 3. , 4.4, 1.4, // class 1
5.9, 3. , 5.1, 1.8 // class 2
]);
const mat = new xgboost.matrix(input, 3, 4);
console.log(model.predict(mat));
// {
// value: [
// 0.991, 0.005, 0.004, // class 0
// 0.004, 0.990, 0.006, // class 1
// 0.005, 0.035, 0.960, // class 2
// ],
// error: undefined, // no error
// }
const errModel = xgboost.XGModel('data/empty');
console.log(errModel);
console.log(errModel.predict());
Contributing
Your help and contribution is very valuable. Welcome to submit issue and pull requests. Learn more