@bazuka5801/zod
v3.22.2
Published
TypeScript-first schema declaration and validation library with static type inference
Downloads
5
Maintainers
Readme
These docs have been translated into Chinese.
Table of contents
- Table of contents
- Introduction
- Installation
- Basic usage
- Primitives
- Coercion for primitives
- Literals
- Strings
- Numbers
- BigInts
- NaNs
- Booleans
- Dates
- Zod enums
- Native enums
- Optionals
- Nullables
- Objects
- Arrays
- Tuples
- Unions
- Discriminated unions
- Records
- Maps
- Sets
- Intersections
- Recursive types
- Promises
- Instanceof
- Functions
- Preprocess
- Custom schemas
- Schema methods
- Guides and concepts
- Comparison
- Changelog
Introduction
Zod is a TypeScript-first schema declaration and validation library. I'm using the term "schema" to broadly refer to any data type, from a simple string
to a complex nested object.
Zod is designed to be as developer-friendly as possible. The goal is to eliminate duplicative type declarations. With Zod, you declare a validator once and Zod will automatically infer the static TypeScript type. It's easy to compose simpler types into complex data structures.
Some other great aspects:
- Zero dependencies
- Works in Node.js and all modern browsers
- Tiny: 8kb minified + zipped
- Immutable: methods (e.g.
.optional()
) return a new instance - Concise, chainable interface
- Functional approach: parse, don't validate
- Works with plain JavaScript too! You don't need to use TypeScript.
Sponsors
Sponsorship at any level is appreciated and encouraged. For individual developers, consider the Cup of Coffee tier. If you built a paid product using Zod, consider one of the podium tiers.
Gold
Silver
Bronze
Ecosystem
There are a growing number of tools that are built atop or support Zod natively! If you've built a tool or library on top of Zod, tell me about it on Twitter or start a Discussion. I'll add it below and tweet it out.
Resources
- Total TypeScript Zod Tutorial by @mattpocockuk
- Fixing TypeScript's Blindspot: Runtime Typechecking by @jherr
API libraries
tRPC
: Build end-to-end typesafe APIs without GraphQL.@anatine/zod-nestjs
: Helper methods for using Zod in a NestJS project.zod-endpoints
: Contract-first strictly typed endpoints with Zod. OpenAPI compatible.domain-functions
: Decouple your business logic from your framework using composable functions. With first-class type inference from end to end powered by Zod schemas.@zodios/core
: A typescript API client with runtime and compile time validation backed by axios and zod.express-zod-api
: Build Express-based APIs with I/O schema validation and custom middlewares.tapiduck
: End-to-end typesafe JSON APIs with Zod and Express; a bit like tRPC, but simpler.koa-zod-router
: Create typesafe routes in Koa with I/O validation using Zod.
Form integrations
conform
: A progressive enhancement first form validation library for Remix and React Routerreact-hook-form
: A first-party Zod resolver for React Hook Form.zod-validation-error
: Generate user-friendly error messages fromZodError
s.zod-formik-adapter
: A community-maintained Formik adapter for Zod.react-zorm
: Standalone<form>
generation and validation for React using Zod.zodix
: Zod utilities for FormData and URLSearchParams in Remix loaders and actions.remix-params-helper
: Simplify integration of Zod with standard URLSearchParams and FormData for Remix apps.formik-validator-zod
: Formik-compliant validator library that simplifies using Zod with Formik.zod-i18n-map
: Useful for translating Zod error messages.@modular-forms/solid
: Modular form library for SolidJS that supports Zod for validation.houseform
: A React form library that uses Zod for validation.sveltekit-superforms
: Supercharged form library for SvelteKit with Zod validation.mobx-zod-form
: Data-first form builder based on MobX & Zod.@vee-validate/zod
: Form library for Vue.js with Zod schema validation.
Zod to X
zod-to-ts
: Generate TypeScript definitions from Zod schemas.zod-to-json-schema
: Convert your Zod schemas into JSON Schemas.@anatine/zod-openapi
: Converts a Zod schema to an OpenAPI v3.xSchemaObject
.zod-fast-check
: Generatefast-check
arbitraries from Zod schemas.zod-dto
: Generate Nest.js DTOs from a Zod schema.fastify-type-provider-zod
: Create Fastify type providers from Zod schemas.zod-to-openapi
: Generate full OpenAPI (Swagger) docs from Zod, including schemas, endpoints & parameters.nestjs-graphql-zod
: Generates NestJS GraphQL model classes from Zod schemas. Provides GraphQL method decorators working with Zod schemas.zod-openapi
: Create full OpenAPI v3.x documentation from Zod schemas.fastify-zod-openapi
: Fastify type provider, validation, serialization and @fastify/swagger support for Zod schemas.typeschema
: Universal adapter for schema validation.
X to Zod
ts-to-zod
: Convert TypeScript definitions into Zod schemas.@runtyping/zod
: Generate Zod from static types & JSON schema.json-schema-to-zod
: Convert your JSON Schemas into Zod schemas. Live demo.json-to-zod
: Convert JSON objects into Zod schemas. Live demo.graphql-codegen-typescript-validation-schema
: GraphQL Code Generator plugin to generate form validation schema from your GraphQL schema.zod-prisma
: Generate Zod schemas from your Prisma schema.Supervillain
: Generate Zod schemas from your Go structs.prisma-zod-generator
: Emit Zod schemas from your Prisma schema.prisma-trpc-generator
: Emit fully implemented tRPC routers and their validation schemas using Zod.zod-prisma-types
Create Zod types from your Prisma models.quicktype
: Convert JSON objects and JSON schemas into Zod schemas.
Mocking
@anatine/zod-mock
: Generate mock data from a Zod schema. Powered by faker.js.zod-mocking
: Generate mock data from your Zod schemas.zod-fixture
: Use your zod schemas to automate the generation of non-relevant test fixtures in a deterministic way.zocker
: Generate plausible mock-data from your schemas.zodock
Generate mock data based on Zod schemas.
Powered by Zod
freerstore
: Firestore cost optimizer.slonik
: Node.js Postgres client with strong Zod integration.soly
: Create CLI applications with zod.zod-xlsx
: A xlsx based resource validator using Zod schemas.znv
: Type-safe environment parsing and validation for Node.js with Zod schemas.
Utilities for Zod
zod_utilz
: Framework agnostic utilities for Zod.
Installation
Requirements
TypeScript 4.5+!
You must enable
strict
mode in yourtsconfig.json
. This is a best practice for all TypeScript projects.// tsconfig.json { // ... "compilerOptions": { // ... "strict": true } }
From npm
(Node/Bun)
npm install zod # npm
yarn add zod # yarn
bun add zod # bun
pnpm add zod # pnpm
Zod also publishes a canary version on every commit. To install the canary:
npm install zod@canary # npm
yarn add zod@canary # yarn
bun add zod@canary # bun
pnpm add zod@canary # pnpm
From deno.land/x
(Deno)
Unlike Node, Deno relies on direct URL imports instead of a package manager like NPM. Zod is available on deno.land/x. The latest version can be imported like so:
import { z } from "https://deno.land/x/zod/mod.ts";
You can also specify a particular version:
import { z } from "https://deno.land/x/[email protected]/mod.ts";
The rest of this README assumes you are using npm and importing directly from the
"zod"
package.
Basic usage
Creating a simple string schema
import { z } from "zod";
// creating a schema for strings
const mySchema = z.string();
// parsing
mySchema.parse("tuna"); // => "tuna"
mySchema.parse(12); // => throws ZodError
// "safe" parsing (doesn't throw error if validation fails)
mySchema.safeParse("tuna"); // => { success: true; data: "tuna" }
mySchema.safeParse(12); // => { success: false; error: ZodError }
Creating an object schema
import { z } from "zod";
const User = z.object({
username: z.string(),
});
User.parse({ username: "Ludwig" });
// extract the inferred type
type User = z.infer<typeof User>;
// { username: string }
Primitives
import { z } from "zod";
// primitive values
z.string();
z.number();
z.bigint();
z.boolean();
z.date();
z.symbol();
// empty types
z.undefined();
z.null();
z.void(); // accepts undefined
// catch-all types
// allows any value
z.any();
z.unknown();
// never type
// allows no values
z.never();
Coercion for primitives
Zod now provides a more convenient way to coerce primitive values.
const schema = z.coerce.string();
schema.parse("tuna"); // => "tuna"
schema.parse(12); // => "12"
schema.parse(true); // => "true"
During the parsing step, the input is passed through the String()
function, which is a JavaScript built-in for coercing data into strings. Note that the returned schema is a ZodString
instance so you can use all string methods.
z.coerce.string().email().min(5);
All primitive types support coercion.
z.coerce.string(); // String(input)
z.coerce.number(); // Number(input)
z.coerce.boolean(); // Boolean(input)
z.coerce.bigint(); // BigInt(input)
z.coerce.date(); // new Date(input)
Boolean coercion
Zod's boolean coercion is very simple! It passes the value into the Boolean(value)
function, that's it. Any truthy value will resolve to true
, any falsy value will resolve to false
.
z.coerce.boolean().parse("tuna"); // => true
z.coerce.boolean().parse("true"); // => true
z.coerce.boolean().parse("false"); // => true
z.coerce.boolean().parse(1); // => true
z.coerce.boolean().parse([]); // => true
z.coerce.boolean().parse(0); // => false
z.coerce.boolean().parse(undefined); // => false
z.coerce.boolean().parse(null); // => false
Literals
Literal schemas represent a literal type, like "hello world"
or 5
.
const tuna = z.literal("tuna");
const twelve = z.literal(12);
const twobig = z.literal(2n); // bigint literal
const tru = z.literal(true);
const terrificSymbol = Symbol("terrific");
const terrific = z.literal(terrificSymbol);
// retrieve literal value
tuna.value; // "tuna"
Currently there is no support for Date literals in Zod. If you have a use case for this feature, please file an issue.
Strings
Zod includes a handful of string-specific validations.
// validations
z.string().max(5);
z.string().min(5);
z.string().length(5);
z.string().email();
z.string().url();
z.string().emoji();
z.string().uuid();
z.string().cuid();
z.string().cuid2();
z.string().ulid();
z.string().regex(regex);
z.string().includes(string);
z.string().startsWith(string);
z.string().endsWith(string);
z.string().datetime(); // defaults to UTC, see below for options
z.string().ip(); // defaults to IPv4 and IPv6, see below for options
// transformations
z.string().trim(); // trim whitespace
z.string().toLowerCase(); // toLowerCase
z.string().toUpperCase(); // toUpperCase
Check out validator.js for a bunch of other useful string validation functions that can be used in conjunction with Refinements.
You can customize some common error messages when creating a string schema.
const name = z.string({
required_error: "Name is required",
invalid_type_error: "Name must be a string",
});
When using validation methods, you can pass in an additional argument to provide a custom error message.
z.string().min(5, { message: "Must be 5 or more characters long" });
z.string().max(5, { message: "Must be 5 or fewer characters long" });
z.string().length(5, { message: "Must be exactly 5 characters long" });
z.string().email({ message: "Invalid email address" });
z.string().url({ message: "Invalid url" });
z.string().emoji({ message: "Contains non-emoji characters" });
z.string().uuid({ message: "Invalid UUID" });
z.string().includes("tuna", { message: "Must include tuna" });
z.string().startsWith("https://", { message: "Must provide secure URL" });
z.string().endsWith(".com", { message: "Only .com domains allowed" });
z.string().datetime({ message: "Invalid datetime string! Must be UTC." });
z.string().ip({ message: "Invalid IP address" });
ISO datetimes
The z.string().datetime()
method defaults to UTC validation: no timezone offsets with arbitrary sub-second decimal precision.
const datetime = z.string().datetime();
datetime.parse("2020-01-01T00:00:00Z"); // pass
datetime.parse("2020-01-01T00:00:00.123Z"); // pass
datetime.parse("2020-01-01T00:00:00.123456Z"); // pass (arbitrary precision)
datetime.parse("2020-01-01T00:00:00+02:00"); // fail (no offsets allowed)
Timezone offsets can be allowed by setting the offset
option to true
.
const datetime = z.string().datetime({ offset: true });
datetime.parse("2020-01-01T00:00:00+02:00"); // pass
datetime.parse("2020-01-01T00:00:00.123+02:00"); // pass (millis optional)
datetime.parse("2020-01-01T00:00:00.123+0200"); // pass (millis optional)
datetime.parse("2020-01-01T00:00:00.123+02"); // pass (only offset hours)
datetime.parse("2020-01-01T00:00:00Z"); // pass (Z still supported)
You can additionally constrain the allowable precision
. By default, arbitrary sub-second precision is supported (but optional).
const datetime = z.string().datetime({ precision: 3 });
datetime.parse("2020-01-01T00:00:00.123Z"); // pass
datetime.parse("2020-01-01T00:00:00Z"); // fail
datetime.parse("2020-01-01T00:00:00.123456Z"); // fail
IP addresses
The z.string().ip()
method by default validate IPv4 and IPv6.
const ip = z.string().ip();
ip.parse("192.168.1.1"); // pass
ip.parse("84d5:51a0:9114:1855:4cfa:f2d7:1f12:7003"); // pass
ip.parse("84d5:51a0:9114:1855:4cfa:f2d7:1f12:192.168.1.1"); // pass
ip.parse("256.1.1.1"); // fail
ip.parse("84d5:51a0:9114:gggg:4cfa:f2d7:1f12:7003"); // fail
You can additionally set the IP version
.
const ipv4 = z.string().ip({ version: "v4" });
ipv4.parse("84d5:51a0:9114:1855:4cfa:f2d7:1f12:7003"); // fail
const ipv6 = z.string().ip({ version: "v6" });
ipv6.parse("192.168.1.1"); // fail
Numbers
You can customize certain error messages when creating a number schema.
const age = z.number({
required_error: "Age is required",
invalid_type_error: "Age must be a number",
});
Zod includes a handful of number-specific validations.
z.number().gt(5);
z.number().gte(5); // alias .min(5)
z.number().lt(5);
z.number().lte(5); // alias .max(5)
z.number().int(); // value must be an integer
z.number().positive(); // > 0
z.number().nonnegative(); // >= 0
z.number().negative(); // < 0
z.number().nonpositive(); // <= 0
z.number().multipleOf(5); // Evenly divisible by 5. Alias .step(5)
z.number().finite(); // value must be finite, not Infinity or -Infinity
z.number().safe(); // value must be between Number.MIN_SAFE_INTEGER and Number.MAX_SAFE_INTEGER
Optionally, you can pass in a second argument to provide a custom error message.
z.number().lte(5, { message: "this👏is👏too👏big" });
BigInts
Zod includes a handful of bigint-specific validations.
z.bigint().gt(5n);
z.bigint().gte(5n); // alias `.min(5n)`
z.bigint().lt(5n);
z.bigint().lte(5n); // alias `.max(5n)`
z.bigint().positive(); // > 0n
z.bigint().nonnegative(); // >= 0n
z.bigint().negative(); // < 0n
z.bigint().nonpositive(); // <= 0n
z.bigint().multipleOf(5n); // Evenly divisible by 5n.
NaNs
You can customize certain error messages when creating a nan schema.
const isNaN = z.nan({
required_error: "isNaN is required",
invalid_type_error: "isNaN must be not a number",
});
Booleans
You can customize certain error messages when creating a boolean schema.
const isActive = z.boolean({
required_error: "isActive is required",
invalid_type_error: "isActive must be a boolean",
});
Dates
Use z.date() to validate Date
instances.
z.date().safeParse(new Date()); // success: true
z.date().safeParse("2022-01-12T00:00:00.000Z"); // success: false
You can customize certain error messages when creating a date schema.
const myDateSchema = z.date({
required_error: "Please select a date and time",
invalid_type_error: "That's not a date!",
});
Zod provides a handful of date-specific validations.
z.date().min(new Date("1900-01-01"), { message: "Too old" });
z.date().max(new Date(), { message: "Too young!" });
Coercion to Date
Since zod 3.20, use z.coerce.date()
to pass the input through new Date(input)
.
const dateSchema = z.coerce.date();
type DateSchema = z.infer<typeof dateSchema>;
// type DateSchema = Date
/* valid dates */
console.log(dateSchema.safeParse("2023-01-10T00:00:00.000Z").success); // true
console.log(dateSchema.safeParse("2023-01-10").success); // true
console.log(dateSchema.safeParse("1/10/23").success); // true
console.log(dateSchema.safeParse(new Date("1/10/23")).success); // true
/* invalid dates */
console.log(dateSchema.safeParse("2023-13-10").success); // false
console.log(dateSchema.safeParse("0000-00-00").success); // false
For older zod versions, use z.preprocess
like described in this thread.
Zod enums
const FishEnum = z.enum(["Salmon", "Tuna", "Trout"]);
type FishEnum = z.infer<typeof FishEnum>;
// 'Salmon' | 'Tuna' | 'Trout'
z.enum
is a Zod-native way to declare a schema with a fixed set of allowable string values. Pass the array of values directly into z.enum()
. Alternatively, use as const
to define your enum values as a tuple of strings. See the const assertion docs for details.
const VALUES = ["Salmon", "Tuna", "Trout"] as const;
const FishEnum = z.enum(VALUES);
This is not allowed, since Zod isn't able to infer the exact values of each element.
const fish = ["Salmon", "Tuna", "Trout"];
const FishEnum = z.enum(fish);
Autocompletion
To get autocompletion with a Zod enum, use the .enum
property of your schema:
FishEnum.enum.Salmon; // => autocompletes
FishEnum.enum;
/*
=> {
Salmon: "Salmon",
Tuna: "Tuna",
Trout: "Trout",
}
*/
You can also retrieve the list of options as a tuple with the .options
property:
FishEnum.options; // ["Salmon", "Tuna", "Trout"];
Native enums
Zod enums are the recommended approach to defining and validating enums. But if you need to validate against an enum from a third-party library (or you don't want to rewrite your existing enums) you can use z.nativeEnum()
.
Numeric enums
enum Fruits {
Apple,
Banana,
}
const FruitEnum = z.nativeEnum(Fruits);
type FruitEnum = z.infer<typeof FruitEnum>; // Fruits
FruitEnum.parse(Fruits.Apple); // passes
FruitEnum.parse(Fruits.Banana); // passes
FruitEnum.parse(0); // passes
FruitEnum.parse(1); // passes
FruitEnum.parse(3); // fails
String enums
enum Fruits {
Apple = "apple",
Banana = "banana",
Cantaloupe, // you can mix numerical and string enums
}
const FruitEnum = z.nativeEnum(Fruits);
type FruitEnum = z.infer<typeof FruitEnum>; // Fruits
FruitEnum.parse(Fruits.Apple); // passes
FruitEnum.parse(Fruits.Cantaloupe); // passes
FruitEnum.parse("apple"); // passes
FruitEnum.parse("banana"); // passes
FruitEnum.parse(0); // passes
FruitEnum.parse("Cantaloupe"); // fails
Const enums
The .nativeEnum()
function works for as const
objects as well. ⚠️ as const
requires TypeScript 3.4+!
const Fruits = {
Apple: "apple",
Banana: "banana",
Cantaloupe: 3,
} as const;
const FruitEnum = z.nativeEnum(Fruits);
type FruitEnum = z.infer<typeof FruitEnum>; // "apple" | "banana" | 3
FruitEnum.parse("apple"); // passes
FruitEnum.parse("banana"); // passes
FruitEnum.parse(3); // passes
FruitEnum.parse("Cantaloupe"); // fails
You can access the underlying object with the .enum
property:
FruitEnum.enum.Apple; // "apple"
Optionals
You can make any schema optional with z.optional()
. This wraps the schema in a ZodOptional
instance and returns the result.
const schema = z.optional(z.string());
schema.parse(undefined); // => returns undefined
type A = z.infer<typeof schema>; // string | undefined
For convenience, you can also call the .optional()
method on an existing schema.
const user = z.object({
username: z.string().optional(),
});
type C = z.infer<typeof user>; // { username?: string | undefined };
You can extract the wrapped schema from a ZodOptional
instance with .unwrap()
.
const stringSchema = z.string();
const optionalString = stringSchema.optional();
optionalString.unwrap() === stringSchema; // true
Nullables
Similarly, you can create nullable types with z.nullable()
.
const nullableString = z.nullable(z.string());
nullableString.parse("asdf"); // => "asdf"
nullableString.parse(null); // => null
Or use the .nullable()
method.
const E = z.string().nullable(); // equivalent to nullableString
type E = z.infer<typeof E>; // string | null
Extract the inner schema with .unwrap()
.
const stringSchema = z.string();
const nullableString = stringSchema.nullable();
nullableString.unwrap() === stringSchema; // true
Objects
// all properties are required by default
const Dog = z.object({
name: z.string(),
age: z.number(),
});
// extract the inferred type like this
type Dog = z.infer<typeof Dog>;
// equivalent to:
type Dog = {
name: string;
age: number;
};
.shape
Use .shape
to access the schemas for a particular key.
Dog.shape.name; // => string schema
Dog.shape.age; // => number schema
.keyof
Use .keyof
to create a ZodEnum
schema from the keys of an object schema.
const keySchema = Dog.keyof();
keySchema; // ZodEnum<["name", "age"]>
.extend
You can add additional fields to an object schema with the .extend
method.
const DogWithBreed = Dog.extend({
breed: z.string(),
});
You can use .extend
to overwrite fields! Be careful with this power!
.merge
Equivalent to A.extend(B.shape)
.
const BaseTeacher = z.object({ students: z.array(z.string()) });
const HasID = z.object({ id: z.string() });
const Teacher = BaseTeacher.merge(HasID);
type Teacher = z.infer<typeof Teacher>; // => { students: string[], id: string }
If the two schemas share keys, the properties of B overrides the property of A. The returned schema also inherits the "unknownKeys" policy (strip/strict/passthrough) and the catchall schema of B.
.pick/.omit
Inspired by TypeScript's built-in Pick
and Omit
utility types, all Zod object schemas have .pick
and .omit
methods that return a modified version. Consider this Recipe schema:
const Recipe = z.object({
id: z.string(),
name: z.string(),
ingredients: z.array(z.string()),
});
To only keep certain keys, use .pick
.
const JustTheName = Recipe.pick({ name: true });
type JustTheName = z.infer<typeof JustTheName>;
// => { name: string }
To remove certain keys, use .omit
.
const NoIDRecipe = Recipe.omit({ id: true });
type NoIDRecipe = z.infer<typeof NoIDRecipe>;
// => { name: string, ingredients: string[] }
.partial
Inspired by the built-in TypeScript utility type Partial, the .partial
method makes all properties optional.
Starting from this object:
const user = z.object({
email: z.string(),
username: z.string(),
});
// { email: string; username: string }
We can create a partial version:
const partialUser = user.partial();
// { email?: string | undefined; username?: string | undefined }
You can also specify which properties to make optional:
const optionalEmail = user.partial({
email: true,
});
/*
{
email?: string | undefined;
username: string
}
*/
.deepPartial
The .partial
method is shallow — it only applies one level deep. There is also a "deep" version:
const user = z.object({
username: z.string(),
location: z.object({
latitude: z.number(),
longitude: z.number(),
}),
strings: z.array(z.object({ value: z.string() })),
});
const deepPartialUser = user.deepPartial();
/*
{
username?: string | undefined,
location?: {
latitude?: number | undefined;
longitude?: number | undefined;
} | undefined,
strings?: { value?: string}[]
}
*/
Important limitation: deep partials only work as expected in hierarchies of objects, arrays, and tuples.
.required
Contrary to the .partial
method, the .required
method makes all properties required.
Starting from this object:
const user = z
.object({
email: z.string(),
username: z.string(),
})
.partial();
// { email?: string | undefined; username?: string | undefined }
We can create a required version:
const requiredUser = user.required();
// { email: string; username: string }
You can also specify which properties to make required:
const requiredEmail = user.required({
email: true,
});
/*
{
email: string;
username?: string | undefined;
}
*/
.passthrough
By default Zod object schemas strip out unrecognized keys during parsing.
const person = z.object({
name: z.string(),
});
person.parse({
name: "bob dylan",
extraKey: 61,
});
// => { name: "bob dylan" }
// extraKey has been stripped
Instead, if you want to pass through unknown keys, use .passthrough()
.
person.passthrough().parse({
name: "bob dylan",
extraKey: 61,
});
// => { name: "bob dylan", extraKey: 61 }
.strict
By default Zod object schemas strip out unrecognized keys during parsing. You can disallow unknown keys with .strict()
. If there are any unknown keys in the input, Zod will throw an error.
const person = z
.object({
name: z.string(),
})
.strict();
person.parse({
name: "bob dylan",
extraKey: 61,
});
// => throws ZodError
.strip
You can use the .strip
method to reset an object schema to the default behavior (stripping unrecognized keys).
.catchall
You can pass a "catchall" schema into an object schema. All unknown keys will be validated against it.
const person = z
.object({
name: z.string(),
})
.catchall(z.number());
person.parse({
name: "bob dylan",
validExtraKey: 61, // works fine
});
person.parse({
name: "bob dylan",
validExtraKey: false, // fails
});
// => throws ZodError
Using .catchall()
obviates .passthrough()
, .strip()
, or .strict()
. All keys are now considered "known".
Arrays
const stringArray = z.array(z.string());
// equivalent
const stringArray = z.string().array();
Be careful with the .array()
method. It returns a new ZodArray
instance. This means the order in which you call methods matters. For instance:
z.string().optional().array(); // (string | undefined)[]
z.string().array().optional(); // string[] | undefined
.element
Use .element
to access the schema for an element of the array.
stringArray.element; // => string schema
.nonempty
If you want to ensure that an array contains at least one element, use .nonempty()
.
const nonEmptyStrings = z.string().array().nonempty();
// the inferred type is now
// [string, ...string[]]
nonEmptyStrings.parse([]); // throws: "Array cannot be empty"
nonEmptyStrings.parse(["Ariana Grande"]); // passes
You can optionally specify a custom error message:
// optional custom error message
const nonEmptyStrings = z.string().array().nonempty({
message: "Can't be empty!",
});
.min/.max/.length
z.string().array().min(5); // must contain 5 or more items
z.string().array().max(5); // must contain 5 or fewer items
z.string().array().length(5); // must contain 5 items exactly
Unlike .nonempty()
these methods do not change the inferred type.
Tuples
Unlike arrays, tuples have a fixed number of elements and each element can have a different type.
const athleteSchema = z.tuple([
z.string(), // name
z.number(), // jersey number
z.object({
pointsScored: z.number(),
}), // statistics
]);
type Athlete = z.infer<typeof athleteSchema>;
// type Athlete = [string, number, { pointsScored: number }]
A variadic ("rest") argument can be added with the .rest
method.
const variadicTuple = z.tuple([z.string()]).rest(z.number());
const result = variadicTuple.parse(["hello", 1, 2, 3]);
// => [string, ...number[]];
Unions
Zod includes a built-in z.union
method for composing "OR" types.
const stringOrNumber = z.union([z.string(), z.number()]);
stringOrNumber.parse("foo"); // passes
stringOrNumber.parse(14); // passes
Zod will test the input against each of the "options" in order and return the first value that validates successfully.
For convenience, you can also use the .or
method:
const stringOrNumber = z.string().or(z.number());
Optional string validation:
To validate an optional form input, you can union the desired string validation with an empty string literal.
This example validates an input that is optional but needs to contain a valid URL:
const optionalUrl = z.union([z.string().url().nullish(), z.literal("")]);
console.log(optionalUrl.safeParse(undefined).success); // true
console.log(optionalUrl.safeParse(null).success); // true
console.log(optionalUrl.safeParse("").success); // true
console.log(optionalUrl.safeParse("https://zod.dev").success); // true
console.log(optionalUrl.safeParse("not a valid url").success); // false
Discriminated unions
A discriminated union is a union of object schemas that all share a particular key.
type MyUnion =
| { status: "success"; data: string }
| { status: "failed"; error: Error };
Such unions can be represented with the z.discriminatedUnion
method. This enables faster evaluation, because Zod can check the discriminator key (status
in the example above) to determine which schema should be used to parse the input. This makes parsing more efficient and lets Zod report friendlier errors.
With the basic union method, the input is tested against each of the provided "options", and in the case of invalidity, issues for all the "options" are shown in the zod error. On the other hand, the discriminated union allows for selecting just one of the "options", testing against it, and showing only the issues related to this "option".
const myUnion = z.discriminatedUnion("status", [
z.object({ status: z.literal("success"), data: z.string() }),
z.object({ status: z.literal("failed"), error: z.instanceof(Error) }),
]);
myUnion.parse({ status: "success", data: "yippie ki yay" });
Records
Record schemas are used to validate types such as { [k: string]: number }
.
If you want to validate the values of an object against some schema but don't care about the keys, use z.record(valueType)
:
const NumberCache = z.record(z.number());
type NumberCache = z.infer<typeof NumberCache>;
// => { [k: string]: number }
This is particularly useful for storing or caching items by ID.
const userSchema = z.object({ name: z.string() });
const userStoreSchema = z.record(userSchema);
type UserStore = z.infer<typeof userStoreSchema>;
// => type UserStore = { [ x: string ]: { name: string } }
const userStore: UserStore = {};
userStore["77d2586b-9e8e-4ecf-8b21-ea7e0530eadd"] = {
name: "Carlotta",
}; // passes
userStore["77d2586b-9e8e-4ecf-8b21-ea7e0530eadd"] = {
whatever: "Ice cream sundae",
}; // TypeError
Record key type
If you want to validate both the keys and the values, use
z.record(keyType, valueType)
:
const NoEmptyKeysSchema = z.record(z.string().min(1), z.number());
NoEmptyKeysSchema.parse({ count: 1 }); // => { 'count': 1 }
NoEmptyKeysSchema.parse({ "": 1 }); // fails
(Notice how when passing two arguments, valueType
is the second argument)
A note on numerical keys
While z.record(keyType, valueType)
is able to accept numerical key types and TypeScript's built-in Record type is Record<KeyType, ValueType>
, it's hard to represent the TypeScript type Record<number, any>
in Zod.
As it turns out, TypeScript's behavior surrounding [k: number]
is a little unintuitive:
const testMap: { [k: number]: string } = {
1: "one",
};
for (const key in testMap) {
console.log(`${key}: ${typeof key}`);
}
// prints: `1: string`
As you can see, JavaScript automatically casts all object keys to strings under the hood. Since Zod is trying to bridge the gap between static and runtime types, it doesn't make sense to provide a way of creating a record schema with numerical keys, since there's no such thing as a numerical key in runtime JavaScript.
Maps
const stringNumberMap = z.map(z.string(), z.number());
type StringNumberMap = z.infer<typeof stringNumberMap>;
// type StringNumberMap = Map<string, number>
Sets
const numberSet = z.set(z.number());
type NumberSet = z.infer<typeof numberSet>;
// type NumberSet = Set<number>
Set schemas can be further constrained with the following utility methods.
z.set(z.string()).nonempty(); // must contain at least one item
z.set(z.string()).min(5); // must contain 5 or more items
z.set(z.string()).max(5); // must contain 5 or fewer items
z.set(z.string()).size(5); // must contain 5 items exactly
Intersections
Intersections are useful for creating "logical AND" types. This is useful for intersecting two object types.
const Person = z.object({
name: z.string(),
});
const Employee = z.object({
role: z.string(),
});
const EmployedPerson = z.intersection(Person, Employee);
// equivalent to:
const EmployedPerson = Person.and(Employee);
Though in many cases, it is recommended to use A.merge(B)
to merge two objects. The .merge
method returns a new ZodObject
instance, whereas A.and(B)
returns a less useful ZodIntersection
instance that lacks common object methods like pick
and omit
.
const a = z.union([z.number(), z.string()]);
const b = z.union([z.number(), z.boolean()]);
const c = z.intersection(a, b);
type c = z.infer<typeof c>; // => number
Recursive types
You can define a recursive schema in Zod, but because of a limitation of TypeScript, their type can't be statically inferred. Instead you'll need to define the type definition manually, and provide it to Zod as a "type hint".
const baseCategorySchema = z.object({
name: z.string(),
});
type Category = z.infer<typeof baseCategorySchema> & {
subcategories: Category[];
};
const categorySchema: z.ZodType<Category> = baseCategorySchema.extend({
subcategories: z.lazy(() => categorySchema.array()),
});
categorySchema.parse({
name: "People",
subcategories: [
{
name: "Politicians",
subcategories: [
{
name: "Presidents",
subcategories: [],
},
],
},
],
}); // passes
Thanks to crasite for this example.
ZodType with ZodEffects
When using z.ZodType
with z.ZodEffects
(
.refine
,
.transform
,
preprocess
,
etc...
), you will need to define the input and output types of the schema. z.ZodType<Output, z.ZodTypeDef, Input>
const isValidId = (id: string): id is `${string}/${string}` =>
id.split("/").length === 2;
const baseSchema = z.object({
id: z.string().refine(isValidId),
});
type Input = z.input<typeof baseSchema> & {
children: Input[];
};
type Output = z.output<typeof baseSchema> & {
children: Output[];
};
const schema: z.ZodType<Output, z.ZodTypeDef, Input> = baseSchema.extend({
children: z.lazy(() => schema.array()),
});
Thanks to marcus13371337 and JoelBeeldi for this example.
JSON type
If you want to validate any JSON value, you can use the snippet below.
const literalSchema = z.union([z.string(), z.number(), z.boolean(), z.null()]);
type Literal = z.infer<typeof literalSchema>;
type Json = Literal | { [key: string]: Json } | Json[];
const jsonSchema: z.ZodType<Json> = z.lazy(() =>
z.union([literalSchema, z.array(jsonSchema), z.record(jsonSchema)])
);
jsonSchema.parse(data);
Thanks to ggoodman for suggesting this.
Cyclical objects
Despite supporting recursive schemas, passing cyclical data into Zod will cause an infinite loop.
Promises
const numberPromise = z.promise(z.number());
"Parsing" works a little differently with promise schemas. Validation happens in two parts:
- Zod synchronously checks that the input is an instance of Promise (i.e. an object with
.then
and.catch
methods.). - Zod uses
.then
to attach an additional validation step onto the existing Promise. You'll have to use.catch
on the returned Promise to handle validation failures.
numberPromise.parse("tuna");
// ZodError: Non-Promise type: string
numberPromise.parse(Promise.resolve("tuna"));
// => Promise<number>
const test = async () => {
await numberPromise.parse(Promise.resolve("tuna"));
// ZodError: Non-number type: string
await numberPromise.parse(Promise.resolve(3.14));
// => 3.14
};
Instanceof
You can use z.instanceof
to check that the input is an instance of a class. This is useful to validate inputs against classes that are exported from third-party libraries.
class Test {
name: string;
}
const TestSchema = z.instanceof(Test);
const blob: any = "whatever";
TestSchema.parse(new Test()); // passes
TestSchema.parse("blob"); // throws
Functions
Zod also lets you define "function schemas". This makes it easy to validate the inputs and outputs of a function without intermixing your validation code and "business logic".
You can create a function schema with z.function(args, returnType)
.
const myFunction = z.function();
type myFunction = z.infer<typeof myFunction>;
// => ()=>unknown
Define inputs and outputs.
const myFunction = z
.function()
.args(z.string(), z.number()) // accepts an arbitrary number of arguments
.returns(z.boolean());
type myFunction = z.infer<typeof myFunction>;
// => (arg0: string, arg1: number)=>boolean
Function schemas have an .implement()
method which accepts a function and returns a new function that automatically validates its inputs and outputs.
const trimmedLength = z
.function()
.args(z.string()) // accepts an arbitrary number of arguments
.returns(z.number())
.implement((x) => {
// TypeScript knows x is a string!
return x.trim().length;
});
trimmedLength("sandwich"); // => 8
trimmedLength(" asdf "); // => 4
If you only care about validating inputs, just don't call the .returns()
method. The output type will be inferred from the implementation.
You can use the special
z.void()
option if your function doesn't return anything. This will let Zod properly infer the type of void-returning functions. (Void-returning functions actually return undefined.)
const myFunction = z
.function()
.args(z.string())
.implement((arg) => {
return [arg.length];
});
myFunction; // (arg: string)=>number[]
Extract the input and output schemas from a function schema.
myFunction.parameters();
// => ZodTuple<[ZodString, ZodNumber]>
myFunction.returnType();
// => ZodBoolean
Preprocess
Zod now supports primitive coercion without the need for
.preprocess()
. See the coercion docs for more information.
Typically Zod operates under a "parse then transform" paradigm. Zod validates the input first, then passes it through a chain of transformation functions. (For more information about transforms, read the .transform docs.)
But sometimes you want to apply some transform to the input before parsing happens. A common use case: type coercion. Zod enables this with the z.preprocess()
.
const castToString = z.preprocess((val) => String(val), z.string());
This returns a ZodEffects
instance. ZodEffects
is a wrapper class that contains all logic pertaining to preprocessing, refinements, and transforms.
Custom schemas
You can create a Zod schema for any TypeScript type by using z.custom()
. This is useful for creating schemas for types that are not supported by Zod out of the box, such as template string literals.
const px = z.custom<`${number}px`>((val) => {
return /^\d+px$/.test(val as string);
});
type px = z.infer<typeof px>; // `${number}px`
px.parse("42px"); // "42px"
px.parse("42vw"); // throws;
If you don't provide a validation function, Zod will allow any value. This can be dangerous!
z.custom<{ arg: string }>(); // performs no validation
You can customize the error message and other options by passing a second argument. This parameter works the same way as the params parameter of .refine
.
z.custom<...>((val) => ..., "custom error message");
Schema methods
All Zod schemas contain certain methods.
.parse
.parse(data: unknown): T
Given any Zod schema, you can call its .parse
method to check data
is valid. If it is, a value is returned with full type information! Otherwise, an error is thrown.
IMPORTANT: The value returned by
.parse
is a deep clone of the variable you passed in.
const stringSchema = z.string();
stringSchema.parse("fish"); // => returns "fish"
stringSchema.parse(12); // throws error
.parseAsync
.parseAsync(data:unknown): Promise<T>
If you use asynchronous refinements or transforms (more on those later), you'll need to use .parseAsync
.
const stringSchema = z.string().refine(async (val) => val.length <= 8);
await stringSchema.parseAsync("hello"); // => returns "hello"
await stringSchema.parseAsync("hello world"); // => throws error
.safeParse
.safeParse(data:unknown): { success: true; data: T; } | { success: false; error: ZodError; }
If you don't want Zod to throw errors when validation fails, use .safeParse
. This method returns an object containing either the successfully parsed data or a ZodError instance containing detailed information about the validation problems.
stringSchema.safeParse(12);
// => { success: false; error: ZodError }
stringSchema.safeParse("billie");
// => { success: true; data: 'billie' }
The result is a discriminated union, so you can handle errors very conveniently:
const result = stringSchema.safeParse("billie");
if (!result.success) {
// handle error then return
result.error;
} else {
// do something
result.data;
}
.safeParseAsync
Alias:
.spa
An asynchronous version of safeParse
.
await stringSchema.safeParseAsync("billie");
For convenience, this has been aliased to .spa
:
await stringSchema.spa("billie");
.refine
.refine(validator: (data:T)=>any, params?: RefineParams)
Zod lets you provide custom validation logic via refinements. (For advanced features like creating multiple issues and customizing error codes, see .superRefine
.)
Zod was designed to mirror TypeScript as closely as possible. But there are many so-called "refinement types" you may wish to check for that can't be represented in TypeScript's type system. For instance: checking that a number is an integer or that a string is a valid email address.
For example, you can define a custom validation check on any Zod schema with .refine
:
const myString = z.string().refine((val) => val.length <= 255, {
message: "String can't be more than 255 characters",
});
⚠️ Refinement functions should not throw. Instead they should return a falsy value to signal failure.
Arguments
As you can see, .refine
takes two arguments.
- The first is the validation function. This function takes one input (of type
T
— the inferred type of the schema) and returnsany
. Any truthy value will pass validation. (Prior to [email protected] the validation function had to return a boolean.) - The second argument accepts some options. You can use this to customize certain error-handling behavior:
type RefineParams = {
// override error message
message?: string;
// appended to error path
path?: (string | number)[];
// params object you can use to customize message
// in error map
params?: object;
};
For advanced cases, the second argument can also be a function that returns RefineParams
.
const longString = z.string().refine(
(val) => val.length > 10,
(val) => ({ message: `${val} is not more than 10 characters` })
);
Customize error path
const passwordForm = z
.object({
password: z.string(),
confirm: z.string(),
})
.refine((data) => data.password === data.confirm, {
message: "Passwords don't match",
path: ["confirm"], // path of error
});
passwordForm.parse({ password: "asdf", confirm: "qwer" });
Because you provided a path
parameter, the resulting error will be:
ZodError {
issues: [{
"code": "custom",
"path": [ "confirm" ],
"message": "Passwords don't match"
}]
}
Asynchronous refinements
Refinements can also be async:
const userId = z.string().refine(async (id) => {
// verify that ID exists in database
return true;
});
⚠️ If you use async refinements, you must use the
.parseAsync
method to parse data! Otherwise Zod will throw an error.
Relationship to transforms
Transforms and refinements can be interleaved:
z.string()
.transform((val) => val.length)
.refine((val) => val > 25);
.superRefine
The .refine
method is actually syntactic sugar atop a more versatile (and verbose) method called superRefine
. Here's an example:
const Strings = z.array(z.string()).superRefine((val, ctx) => {
if (val.length > 3) {
ctx.addIssue({