npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

@aws-cdk/aws-glue-alpha

v2.169.0-alpha.0

Published

The CDK Construct Library for AWS::Glue

Downloads

278,623

Readme

AWS Glue Construct Library


cdk-constructs: Experimental

The APIs of higher level constructs in this module are experimental and under active development. They are subject to non-backward compatible changes or removal in any future version. These are not subject to the Semantic Versioning model and breaking changes will be announced in the release notes. This means that while you may use them, you may need to update your source code when upgrading to a newer version of this package.


This module is part of the AWS Cloud Development Kit project.

Job

A Job encapsulates a script that connects to data sources, processes them, and then writes output to a data target.

There are 3 types of jobs supported by AWS Glue: Spark ETL, Spark Streaming, and Python Shell jobs.

The glue.JobExecutable allows you to specify the type of job, the language to use and the code assets required by the job.

glue.Code allows you to refer to the different code assets required by the job, either from an existing S3 location or from a local file path.

glue.ExecutionClass allows you to specify FLEX or STANDARD. FLEX is appropriate for non-urgent jobs such as pre-production jobs, testing, and one-time data loads.

Spark Jobs

These jobs run in an Apache Spark environment managed by AWS Glue.

ETL Jobs

An ETL job processes data in batches using Apache Spark.

declare const bucket: s3.Bucket;
new glue.Job(this, 'ScalaSparkEtlJob', {
  executable: glue.JobExecutable.scalaEtl({
    glueVersion: glue.GlueVersion.V4_0,
    script: glue.Code.fromBucket(bucket, 'src/com/example/HelloWorld.scala'),
    className: 'com.example.HelloWorld',
    extraJars: [glue.Code.fromBucket(bucket, 'jars/HelloWorld.jar')],
  }),
  workerType: glue.WorkerType.G_8X,
  description: 'an example Scala ETL job',
});

Streaming Jobs

A Streaming job is similar to an ETL job, except that it performs ETL on data streams. It uses the Apache Spark Structured Streaming framework. Some Spark job features are not available to streaming ETL jobs.

new glue.Job(this, 'PythonSparkStreamingJob', {
  executable: glue.JobExecutable.pythonStreaming({
    glueVersion: glue.GlueVersion.V4_0,
    pythonVersion: glue.PythonVersion.THREE,
    script: glue.Code.fromAsset(path.join(__dirname, 'job-script', 'hello_world.py')),
  }),
  description: 'an example Python Streaming job',
});

Python Shell Jobs

A Python shell job runs Python scripts as a shell and supports a Python version that depends on the AWS Glue version you are using. This can be used to schedule and run tasks that don't require an Apache Spark environment. Currently, three flavors are supported:

  • PythonVersion.TWO (2.7; EOL)
  • PythonVersion.THREE (3.6)
  • PythonVersion.THREE_NINE (3.9)
declare const bucket: s3.Bucket;
new glue.Job(this, 'PythonShellJob', {
  executable: glue.JobExecutable.pythonShell({
    glueVersion: glue.GlueVersion.V1_0,
    pythonVersion: glue.PythonVersion.THREE,
    script: glue.Code.fromBucket(bucket, 'script.py'),
  }),
  description: 'an example Python Shell job',
});

Ray Jobs

These jobs run in a Ray environment managed by AWS Glue.

new glue.Job(this, 'RayJob', {
  executable: glue.JobExecutable.pythonRay({
    glueVersion: glue.GlueVersion.V4_0,
    pythonVersion: glue.PythonVersion.THREE_NINE,
    runtime: glue.Runtime.RAY_TWO_FOUR,
    script: glue.Code.fromAsset(path.join(__dirname, 'job-script', 'hello_world.py')),
  }),
  workerType: glue.WorkerType.Z_2X,
  workerCount: 2,
  description: 'an example Ray job'
});

Enable Spark UI

Enable Spark UI setting the sparkUI property.

new glue.Job(this, 'EnableSparkUI', {
  jobName: 'EtlJobWithSparkUIPrefix',
  sparkUI: {
    enabled: true,
  },
  executable: glue.JobExecutable.pythonEtl({
    glueVersion: glue.GlueVersion.V3_0,
    pythonVersion: glue.PythonVersion.THREE,
    script: glue.Code.fromAsset(path.join(__dirname, 'job-script', 'hello_world.py')),
  }),
});

The sparkUI property also allows the specification of an s3 bucket and a bucket prefix.

See documentation for more information on adding jobs in Glue.

Enable Job Run Queuing

AWS Glue job queuing monitors your account level quotas and limits. If quotas or limits are insufficient to start a Glue job run, AWS Glue will automatically queue the job and wait for limits to free up. Once limits become available, AWS Glue will retry the job run. Glue jobs will queue for limits like max concurrent job runs per account, max concurrent Data Processing Units (DPU), and resource unavailable due to IP address exhaustion in Amazon Virtual Private Cloud (Amazon VPC).

Enable job run queuing by setting the jobRunQueuingEnabled property to true.

new glue.Job(this, 'EnableRunQueuing', {
  jobName: 'EtlJobWithRunQueuing',
  executable: glue.JobExecutable.pythonEtl({
    glueVersion: glue.GlueVersion.V4_0,
    pythonVersion: glue.PythonVersion.THREE,
    script: glue.Code.fromAsset(path.join(__dirname, 'job-script', 'hello_world.py')),
  }),
  jobRunQueuingEnabled: true,
});

Connection

A Connection allows Glue jobs, crawlers and development endpoints to access certain types of data stores. For example, to create a network connection to connect to a data source within a VPC:

declare const securityGroup: ec2.SecurityGroup;
declare const subnet: ec2.Subnet;
new glue.Connection(this, 'MyConnection', {
  type: glue.ConnectionType.NETWORK,
  // The security groups granting AWS Glue inbound access to the data source within the VPC
  securityGroups: [securityGroup],
  // The VPC subnet which contains the data source
  subnet,
});

For RDS Connection by JDBC, it is recommended to manage credentials using AWS Secrets Manager. To use Secret, specify SECRET_ID in properties like the following code. Note that in this case, the subnet must have a route to the AWS Secrets Manager VPC endpoint or to the AWS Secrets Manager endpoint through a NAT gateway.

declare const securityGroup: ec2.SecurityGroup;
declare const subnet: ec2.Subnet;
declare const db: rds.DatabaseCluster;
new glue.Connection(this, "RdsConnection", {
  type: glue.ConnectionType.JDBC,
  securityGroups: [securityGroup],
  subnet,
  properties: {
    JDBC_CONNECTION_URL: `jdbc:mysql://${db.clusterEndpoint.socketAddress}/databasename`,
    JDBC_ENFORCE_SSL: "false",
    SECRET_ID: db.secret!.secretName,
  },
});

If you need to use a connection type that doesn't exist as a static member on ConnectionType, you can instantiate a ConnectionType object, e.g: new glue.ConnectionType('NEW_TYPE').

See Adding a Connection to Your Data Store and Connection Structure documentation for more information on the supported data stores and their configurations.

SecurityConfiguration

A SecurityConfiguration is a set of security properties that can be used by AWS Glue to encrypt data at rest.

new glue.SecurityConfiguration(this, 'MySecurityConfiguration', {
  cloudWatchEncryption: {
    mode: glue.CloudWatchEncryptionMode.KMS,
  },
  jobBookmarksEncryption: {
    mode: glue.JobBookmarksEncryptionMode.CLIENT_SIDE_KMS,
  },
  s3Encryption: {
    mode: glue.S3EncryptionMode.KMS,
  },
});

By default, a shared KMS key is created for use with the encryption configurations that require one. You can also supply your own key for each encryption config, for example, for CloudWatch encryption:

declare const key: kms.Key;
new glue.SecurityConfiguration(this, 'MySecurityConfiguration', {
  cloudWatchEncryption: {
    mode: glue.CloudWatchEncryptionMode.KMS,
    kmsKey: key,
  },
});

See documentation for more info for Glue encrypting data written by Crawlers, Jobs, and Development Endpoints.

Database

A Database is a logical grouping of Tables in the Glue Catalog.

new glue.Database(this, 'MyDatabase', {
  databaseName: 'my_database',
  description: 'my_database_description',
});

Table

A Glue table describes a table of data in S3: its structure (column names and types), location of data (S3 objects with a common prefix in a S3 bucket), and format for the files (Json, Avro, Parquet, etc.):

declare const myDatabase: glue.Database;
new glue.S3Table(this, 'MyTable', {
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }, {
    name: 'col2',
    type: glue.Schema.array(glue.Schema.STRING),
    comment: 'col2 is an array of strings' // comment is optional
  }],
  dataFormat: glue.DataFormat.JSON,
});

By default, a S3 bucket will be created to store the table's data but you can manually pass the bucket and s3Prefix:

declare const myBucket: s3.Bucket;
declare const myDatabase: glue.Database;
new glue.S3Table(this, 'MyTable', {
  bucket: myBucket,
  s3Prefix: 'my-table/',
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});

Glue tables can be configured to contain user-defined properties, to describe the physical storage of table data, through the storageParameters property:

declare const myDatabase: glue.Database;
new glue.S3Table(this, 'MyTable', {
  storageParameters: [
    glue.StorageParameter.skipHeaderLineCount(1),
    glue.StorageParameter.compressionType(glue.CompressionType.GZIP),
    glue.StorageParameter.custom('separatorChar', ',')
  ],
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});

Glue tables can also be configured to contain user-defined table properties through the parameters property:

declare const myDatabase: glue.Database;
new glue.S3Table(this, 'MyTable', {
  parameters: {
    key1: 'val1',
    key2: 'val2',
  },
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});

Partition Keys

To improve query performance, a table can specify partitionKeys on which data is stored and queried separately. For example, you might partition a table by year and month to optimize queries based on a time window:

declare const myDatabase: glue.Database;
new glue.S3Table(this, 'MyTable', {
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  partitionKeys: [{
    name: 'year',
    type: glue.Schema.SMALL_INT,
  }, {
    name: 'month',
    type: glue.Schema.SMALL_INT,
  }],
  dataFormat: glue.DataFormat.JSON,
});

Partition Indexes

Another way to improve query performance is to specify partition indexes. If no partition indexes are present on the table, AWS Glue loads all partitions of the table and filters the loaded partitions using the query expression. The query takes more time to run as the number of partitions increase. With an index, the query will try to fetch a subset of the partitions instead of loading all partitions of the table.

The keys of a partition index must be a subset of the partition keys of the table. You can have a maximum of 3 partition indexes per table. To specify a partition index, you can use the partitionIndexes property:

declare const myDatabase: glue.Database;
new glue.S3Table(this, 'MyTable', {
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  partitionKeys: [{
    name: 'year',
    type: glue.Schema.SMALL_INT,
  }, {
    name: 'month',
    type: glue.Schema.SMALL_INT,
  }],
  partitionIndexes: [{
    indexName: 'my-index', // optional
    keyNames: ['year'],
  }], // supply up to 3 indexes
  dataFormat: glue.DataFormat.JSON,
});

Alternatively, you can call the addPartitionIndex() function on a table:

declare const myTable: glue.Table;
myTable.addPartitionIndex({
  indexName: 'my-index',
  keyNames: ['year'],
});

Partition Filtering

If you have a table with a large number of partitions that grows over time, consider using AWS Glue partition indexing and filtering.

declare const myDatabase: glue.Database;
new glue.S3Table(this, 'MyTable', {
    database: myDatabase,
    columns: [{
        name: 'col1',
        type: glue.Schema.STRING,
    }],
    partitionKeys: [{
        name: 'year',
        type: glue.Schema.SMALL_INT,
    }, {
        name: 'month',
        type: glue.Schema.SMALL_INT,
    }],
    dataFormat: glue.DataFormat.JSON,
    enablePartitionFiltering: true,
});

Glue Connections

Glue connections allow external data connections to third party databases and data warehouses. However, these connections can also be assigned to Glue Tables, allowing you to query external data sources using the Glue Data Catalog.

Whereas S3Table will point to (and if needed, create) a bucket to store the tables' data, ExternalTable will point to an existing table in a data source. For example, to create a table in Glue that points to a table in Redshift:

declare const myConnection: glue.Connection;
declare const myDatabase: glue.Database;
new glue.ExternalTable(this, 'MyTable', {
  connection: myConnection,
  externalDataLocation: 'default_db_public_example', // A table in Redshift
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});

Encryption

You can enable encryption on a Table's data:

  • S3Managed - (default) Server side encryption (SSE-S3) with an Amazon S3-managed key.
declare const myDatabase: glue.Database;
new glue.S3Table(this, 'MyTable', {
  encryption: glue.TableEncryption.S3_MANAGED,
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});
  • Kms - Server-side encryption (SSE-KMS) with an AWS KMS Key managed by the account owner.
declare const myDatabase: glue.Database;
// KMS key is created automatically
new glue.S3Table(this, 'MyTable', {
  encryption: glue.TableEncryption.KMS,
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});

// with an explicit KMS key
new glue.S3Table(this, 'MyTable', {
  encryption: glue.TableEncryption.KMS,
  encryptionKey: new kms.Key(this, 'MyKey'),
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});
  • KmsManaged - Server-side encryption (SSE-KMS), like Kms, except with an AWS KMS Key managed by the AWS Key Management Service.
declare const myDatabase: glue.Database;
new glue.S3Table(this, 'MyTable', {
  encryption: glue.TableEncryption.KMS_MANAGED,
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});
  • ClientSideKms - Client-side encryption (CSE-KMS) with an AWS KMS Key managed by the account owner.
declare const myDatabase: glue.Database;
// KMS key is created automatically
new glue.S3Table(this, 'MyTable', {
  encryption: glue.TableEncryption.CLIENT_SIDE_KMS, 
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});

// with an explicit KMS key
new glue.S3Table(this, 'MyTable', {
  encryption: glue.TableEncryption.CLIENT_SIDE_KMS,
  encryptionKey: new kms.Key(this, 'MyKey'),
  // ...
  database: myDatabase,
  columns: [{
    name: 'col1',
    type: glue.Schema.STRING,
  }],
  dataFormat: glue.DataFormat.JSON,
});

Note: you cannot provide a Bucket when creating the S3Table if you wish to use server-side encryption (KMS, KMS_MANAGED or S3_MANAGED).

Types

A table's schema is a collection of columns, each of which have a name and a type. Types are recursive structures, consisting of primitive and complex types:

declare const myDatabase: glue.Database;
new glue.S3Table(this, 'MyTable', {
  columns: [{
    name: 'primitive_column',
    type: glue.Schema.STRING,
  }, {
    name: 'array_column',
    type: glue.Schema.array(glue.Schema.INTEGER),
    comment: 'array<integer>',
  }, {
    name: 'map_column',
    type: glue.Schema.map(
      glue.Schema.STRING,
      glue.Schema.TIMESTAMP),
    comment: 'map<string,string>',
  }, {
    name: 'struct_column',
    type: glue.Schema.struct([{
      name: 'nested_column',
      type: glue.Schema.DATE,
      comment: 'nested comment',
    }]),
    comment: "struct<nested_column:date COMMENT 'nested comment'>",
  }],
  // ...
  database: myDatabase,
  dataFormat: glue.DataFormat.JSON,
});  

Primitives

Numeric

| Name | Type | Comments | |----------- |---------- |------------------------------------------------------------------------------------------------------------------ | | FLOAT | Constant | A 32-bit single-precision floating point number | | INTEGER | Constant | A 32-bit signed value in two's complement format, with a minimum value of -2^31 and a maximum value of 2^31-1 | | DOUBLE | Constant | A 64-bit double-precision floating point number | | BIG_INT | Constant | A 64-bit signed INTEGER in two’s complement format, with a minimum value of -2^63 and a maximum value of 2^63 -1 | | SMALL_INT | Constant | A 16-bit signed INTEGER in two’s complement format, with a minimum value of -2^15 and a maximum value of 2^15-1 | | TINY_INT | Constant | A 8-bit signed INTEGER in two’s complement format, with a minimum value of -2^7 and a maximum value of 2^7-1 |

Date and time

| Name | Type | Comments | |----------- |---------- |------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | DATE | Constant | A date in UNIX format, such as YYYY-MM-DD. | | TIMESTAMP | Constant | Date and time instant in the UNiX format, such as yyyy-mm-dd hh:mm:ss[.f...]. For example, TIMESTAMP '2008-09-15 03:04:05.324'. This format uses the session time zone. |

String

| Name | Type | Comments | |-------------------------------------------- |---------- |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | STRING | Constant | A string literal enclosed in single or double quotes | | decimal(precision: number, scale?: number) | Function | precision is the total number of digits. scale (optional) is the number of digits in fractional part with a default of 0. For example, use these type definitions: decimal(11,5), decimal(15) | | char(length: number) | Function | Fixed length character data, with a specified length between 1 and 255, such as char(10) | | varchar(length: number) | Function | Variable length character data, with a specified length between 1 and 65535, such as varchar(10) |

Miscellaneous

| Name | Type | Comments | |--------- |---------- |------------------------------- | | BOOLEAN | Constant | Values are true and false | | BINARY | Constant | Value is in binary |

Complex

| Name | Type | Comments | |------------------------------------- |---------- |------------------------------------------------------------------- | | array(itemType: Type) | Function | An array of some other type | | map(keyType: Type, valueType: Type) | Function | A map of some primitive key type to any value type | | struct(collumns: Column[]) | Function | Nested structure containing individually named and typed collumns |

Data Quality Ruleset

A DataQualityRuleset specifies a data quality ruleset with DQDL rules applied to a specified AWS Glue table. For example, to create a data quality ruleset for a given table:

new glue.DataQualityRuleset(this, 'MyDataQualityRuleset', {
  clientToken: 'client_token',
  description: 'description',
  rulesetName: 'ruleset_name',
  rulesetDqdl: 'ruleset_dqdl',
  tags: {
    key1: 'value1',
    key2: 'value2',
  },
  targetTable: new glue.DataQualityTargetTable('database_name', 'table_name'),
});

For more information, see AWS Glue Data Quality.