@algorithm.ts/dijkstra-bigint
v2.0.14
Published
Dijkstra algorithm (bigint version) optimized with @algorithm.ts/priority-queue.
Downloads
51
Maintainers
Readme
A typescript implementation of the dijkstra algorithm (bigint version).
The following definition is quoted from Wikipedia (https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm):
Dijkstra's algorithm (/ˈdaɪkstrəz/ DYKE-strəz) is an algorithm for finding the shortest paths between nodes in a graph, which may represent, for example, road networks. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later.
Install
npm
npm install --save @algorithm.ts/dijkstra-bigint
yarn
yarn add @algorithm.ts/dijkstra-bigint
deno
import dijkstra from 'https://raw.githubusercontent.com/guanghechen/algorithm.ts/main/packages/dijkstra-bigint/src/index.ts'
Usage
Simple
import dijkstra from '@algorithm.ts/dijkstra-bigint' const dist: bigint[] = dijkstra({ N: 4, source: 0, edges: [ { to: 1, cost: 2n }, { to: 2, cost: 2n }, { to: 3, cost: 2n }, { to: 3, cost: 1n }, ], G: [[0], [1, 2], [3], []], }) // => [0n, 2n, 4n, 4n] // // Which means: // 0 --> 0: cost is 0n // 0 --> 1: cost is 2n // 0 --> 2: cost is 4n // 0 --> 3: cost is 4n
Pass custom
dist
array.import dijkstra from '@algorithm.ts/dijkstra-bigint' const dist: bigint[] = [] dijkstra({ N: 4, source: 0, edges: [ { to: 1, cost: 2n }, { to: 2, cost: 2n }, { to: 3, cost: 2n }, { to: 3, cost: 1n }, ], G: [[0], [1, 2], [3], []], dist, }) dist // => [0n, 2n, 4n, 4n]
Example
A solution for leetcode "Number of Ways to Arrive at Destination" (https://leetcode.com/problems/number-of-ways-to-arrive-at-destination/):
import type { IEdge } from '@algorithm.ts/dijkstra-bigint' import dijkstra from '@algorithm.ts/dijkstra-bigint' const MOD = BigInt(1e9 + 7) export function countPaths(N: number, roads: number[][]): number { const edges: IEdge[] = [] const G: number[][] = new Array(N) for (let i = 0; i < N; ++i) G[i] = [] for (const [from, to, _cost] of roads) { const cost = BigInt(_cost) G[from].push(edges.length) edges.push({ to, cost }) G[to].push(edges.length) edges.push({ to: from, cost }) } const source = 0 const target = N - 1 const dist: bigint[] = dijkstra({ N, source: target, edges, G, dist: customDist }, { INF: BigInt(1e12) }) const dp: bigint[] = new Array(N).fill(-1n) return Number(dfs(source)) function dfs(o: number): bigint { if (o === target) return 1n let answer = dp[o] if (answer !== -1n) return answer answer = 0n const d = dist[o] for (const idx of G[o]) { const e: IEdge = edges[idx] if (dist[e.to] + e.cost === d) { const t = dfs(e.to) answer = modAdd(answer, t) } } dp[o] = answer return answer } }
Related
- 《算法竞赛入门经典(第2版)》(刘汝佳): P359-P362 Dijkstra 算法
- dijkstra 算法 | 光和尘
- dijkstra | Wikipedia
- @algorithm.ts/dijkstra
- @algorithm.ts/priority-queue