@ai-sdk/google-vertex
v2.0.12
Published
The **[Google Vertex provider](https://sdk.vercel.ai/providers/ai-sdk-providers/google-vertex)** for the [AI SDK](https://sdk.vercel.ai/docs) contains language model support for the [Google Vertex AI](https://cloud.google.com/vertex-ai) APIs.
Downloads
81,437
Readme
AI SDK - Google Vertex AI Provider
The Google Vertex provider for the AI SDK contains language model support for the Google Vertex AI APIs.
This library includes a Google Vertex Anthropic provider. This provider closely follows the core Google Vertex library's usage patterns. See more in the Google Vertex Anthropic Provider section below.
Setup
The Google Vertex provider is available in the @ai-sdk/google-vertex
module. You can install it with
npm i @ai-sdk/google-vertex
Google Vertex Provider
The Google Vertex provider has two different authentication implementations depending on your runtime environment:
Node.js Runtime
The Node.js runtime is the default runtime supported by the AI SDK. You can use the default provider instance to generate text with the gemini-1.5-flash
model like this:
import { vertex } from '@ai-sdk/google-vertex';
import { generateText } from 'ai';
const { text } = await generateText({
model: vertex('gemini-1.5-flash'),
prompt: 'Write a vegetarian lasagna recipe.',
});
This provider supports all standard Google Cloud authentication options through the google-auth-library
. The most common authentication method is to set the path to a json credentials file in the GOOGLE_APPLICATION_CREDENTIALS
environment variable. Credentials can be obtained from the Google Cloud Console.
Edge Runtime
The Edge runtime is supported through the @ai-sdk/google-vertex/edge
module. Note the additional sub-module path /edge
required to differentiate the Edge provider from the Node.js provider.
You can use the default provider instance to generate text with the gemini-1.5-flash
model like this:
import { vertex } from '@ai-sdk/google-vertex/edge';
import { generateText } from 'ai';
const { text } = await generateText({
model: vertex('gemini-1.5-flash'),
prompt: 'Write a vegetarian lasagna recipe.',
});
This method supports Google's Application Default Credentials through the environment variables GOOGLE_CLIENT_EMAIL
, GOOGLE_PRIVATE_KEY
, and (optionally) GOOGLE_PRIVATE_KEY_ID
. The values can be obtained from a json credentials file obtained from the Google Cloud Console.
Google Vertex Anthropic Provider
The Google Vertex Anthropic provider is available for both Node.js and Edge runtimes. It follows a similar usage pattern to the core Google Vertex provider.
Node.js Runtime
import { vertexAnthropic } from '@ai-sdk/google-vertex/anthropic';
import { generateText } from 'ai';
const { text } = await generateText({
model: vertexAnthropic('claude-3-5-sonnet@20240620'),
prompt: 'Write a vegetarian lasagna recipe.',
});
Edge Runtime
import { vertexAnthropic } from '@ai-sdk/google-vertex/anthropic/edge';
import { generateText } from 'ai';
const { text } = await generateText({
model: vertexAnthropic('claude-3-5-sonnet@20240620'),
prompt: 'Write a vegetarian lasagna recipe.',
});
Custom Provider Configuration
You can create a custom provider instance using the createVertex
function. This allows you to specify additional configuration options. Below is an example with the default Node.js provider which includes a googleAuthOptions
object.
import { createVertex } from '@ai-sdk/google-vertex';
import { generateText } from 'ai';
const customProvider = createVertex({
project: 'your-project-id',
location: 'us-central1',
googleAuthOptions: {
credentials: {
client_email: 'your-client-email',
private_key: 'your-private-key',
},
},
});
const { text } = await generateText({
model: customProvider('gemini-1.5-flash'),
prompt: 'Write a vegetarian lasagna recipe.',
});
The googleAuthOptions
object is not present in the Edge provider options but custom provider creation is otherwise identical.
The Edge provider supports a googleCredentials
option rather than googleAuthOptions
. This can be used to specify the Google Cloud service account credentials and will take precedence over the environment variables used otherwise.
import { createVertex } from '@ai-sdk/google-vertex/edge';
import { generateText } from 'ai';
const customProvider = createVertex({
project: 'your-project-id',
location: 'us-central1',
googleCredentials: {
clientEmail: 'your-client-email',
privateKey: 'your-private-key',
},
});
const { text } = await generateText({
model: customProvider('gemini-1.5-flash'),
prompt: 'Write a vegetarian lasagna recipe.',
});
Google Vertex Anthropic Provider Custom Configuration
The Google Vertex Anthropic provider custom configuration is analogous to the above:
import { createVertexAnthropic } from '@ai-sdk/google-vertex/anthropic';
import { generateText } from 'ai';
const customProvider = createVertexAnthropic({
project: 'your-project-id',
location: 'us-east5',
});
const { text } = await generateText({
model: customProvider('claude-3-5-sonnet@20240620'),
prompt: 'Write a vegetarian lasagna recipe.',
});
And for the Edge runtime:
import { vertexAnthropic } from '@ai-sdk/google-vertex/anthropic/edge';
import { generateText } from 'ai';
const customProvider = createVertexAnthropic({
project: 'your-project-id',
location: 'us-east5',
});
const { text } = await generateText({
model: customProvider('claude-3-5-sonnet@20240620'),
prompt: 'Write a vegetarian lasagna recipe.',
});
Documentation
Please check out the Google Vertex provider for more information.